Accelerated functional brain aging in major depressive disorder: evidence from a large scale fMRI analysis of Chinese participants

重性抑郁障碍 队列 静息状态功能磁共振成像 精神科 医学 心理学 神经影像学 抗抑郁药 临床心理学 内科学 神经科学 认知 焦虑
作者
Yunsong Luo,Wen-Yu Chen,Jiang Qiu,Tao Jia
出处
期刊:Translational Psychiatry [Springer Nature]
卷期号:12 (1) 被引量:13
标识
DOI:10.1038/s41398-022-02162-y
摘要

Abstract Major depressive disorder (MDD) is one of the most common mental health conditions that has been intensively investigated for its association with brain atrophy and mortality. Recent studies suggest that the deviation between the predicted and the chronological age can be a marker of accelerated brain aging to characterize MDD. However, current conclusions are usually drawn based on structural MRI information collected from Caucasian participants. The universality of this biomarker needs to be further validated by subjects with different ethnic/racial backgrounds and by different types of data. Here we make use of the REST-meta-MDD, a large scale resting-state fMRI dataset collected from multiple cohort participants in China. We develop a stacking machine learning model based on 1101 healthy controls, which estimates a subject’s chronological age from fMRI with promising accuracy. The trained model is then applied to 1276 MDD patients from 24 sites. We observe that MDD patients exhibit a +4.43 years ( p < 0.0001, Cohen’s d = 0.31, 95% CI: 2.23–3.88) higher brain-predicted age difference (brain-PAD) compared to controls. In the MDD subgroup, we observe a statistically significant +2.09 years ( p < 0.05, Cohen’s d = 0.134525) brain-PAD in antidepressant users compared to medication-free patients. The statistical relationship observed is further checked by three different machine learning algorithms. The positive brain-PAD observed in participants in China confirms the presence of accelerated brain aging in MDD patients. The utilization of functional brain connectivity for age estimation verifies existing findings from a new dimension.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
彭于晏应助多情以山采纳,获得10
2秒前
尤咏慈发布了新的文献求助10
3秒前
3秒前
4秒前
一一应助小巧人生采纳,获得10
5秒前
5秒前
zho发布了新的文献求助10
5秒前
6秒前
刘美美完成签到,获得积分10
7秒前
8秒前
CodeCraft应助maclogos采纳,获得10
11秒前
今天又来搬砖啦完成签到,获得积分10
12秒前
13秒前
JIE完成签到,获得积分10
14秒前
严仕国完成签到,获得积分10
14秒前
SciGPT应助wanfengzuojiu采纳,获得10
16秒前
风华发布了新的文献求助30
16秒前
18秒前
18秒前
neufy发布了新的文献求助10
18秒前
19秒前
深情安青应助myheng采纳,获得10
21秒前
21秒前
喵总完成签到,获得积分10
21秒前
科研通AI2S应助tulips采纳,获得10
21秒前
xiaofenzi发布了新的文献求助10
22秒前
Jasper应助你是哪个小猪采纳,获得10
22秒前
24秒前
敏感初露发布了新的文献求助10
24秒前
动点子智慧完成签到,获得积分10
25秒前
Xiaojun发布了新的文献求助10
25秒前
NINI发布了新的文献求助10
25秒前
林钟九发布了新的文献求助10
26秒前
橘子sungua发布了新的文献求助10
28秒前
英俊的铭应助敏感初露采纳,获得10
28秒前
舒伯特完成签到 ,获得积分10
28秒前
125dd发布了新的文献求助10
29秒前
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228284
求助须知:如何正确求助?哪些是违规求助? 2876084
关于积分的说明 8193771
捐赠科研通 2543258
什么是DOI,文献DOI怎么找? 1373602
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621333