Portable FT-NIR spectroscopic sensor for detection of chemical precursors of explosives using advanced prediction algorithms

近红外光谱 爆炸物 分光计 材料科学 计算机科学 化学 光学 物理 有机化学
作者
Adamantia Maria Grammatikaki,Adam Raptakis,Lefteris Gounaridis,Ανδρέας Αθανασόπουλος,Dimitrios Gounaridis,Panos Groumas,Aris Dadoukis,Evangelos Maltezos,Lazaros Karagiannidis,Eleftherios Ouzounoglou,Angelos Amditis,H. Avramopoulos,Christos Kouloumentas
标识
DOI:10.1117/12.2624004
摘要

Near-infrared (NIR) spectroscopy has acquired widespread adoption in various sectors as a result of its benefits over other analytical techniques, the most notable of which is the ability to record spectra for solid samples without any prior manipulation. Furthermore, advances in instrumentation have led to the creation of compact and high-speed spectrometers that can be used in a variety of scenarios, including hazardous materials identification. Fourier Transform NIR (FT-NIR) technology is one of the most useful tools for onsite analysis of chemical and biological substances. Herein, we propose a compact, portable FT-NIR spectroscopic sensor for field measurements, based on commercial broadband light source and spectrometer for detection of chemical precursors of explosives. We mainly focus on four compounds, ammonium nitrate, potassium nitrate, sodium nitrate and urea, some of the best-known chemical precursors of explosives with NIR content. A customized spectral library is constructed, including the forementioned substances under different environmental conditions. We emphasize on two basic factors that can affect the NIR spectra: the relative humidity and the ambient temperature. For the unknown spectrum identification, we evaluate prediction models which involve the use of Random Forest and Support Vector Machine, as well as the Hit Quality Index (HQI) value. The FT-NIR spectroscopic sensor additionally includes an integrated communication module that provides measurement spectra and results to a novel edge computing platform, called DECIoT. We demonstrate the operation of the FT-NIR spectroscopic sensor in real settings under humidity, straight sunlight, and temperature fluctuations, achieving maximum accuracy of 0.96.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无奈盼波完成签到,获得积分10
1秒前
玉9989发布了新的文献求助10
3秒前
1234完成签到,获得积分20
3秒前
高贵梦秋发布了新的文献求助10
4秒前
4秒前
Ustinian完成签到,获得积分10
5秒前
毛豆应助Composer采纳,获得10
6秒前
jxinxxx发布了新的文献求助10
7秒前
7秒前
涛1118完成签到,获得积分20
7秒前
科研通AI2S应助烂漫的飞松采纳,获得10
9秒前
9秒前
儒雅亿先发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
11秒前
Orange应助梁子奥里给采纳,获得10
13秒前
聪慧小燕发布了新的文献求助30
13秒前
Unifrog发布了新的文献求助10
14秒前
和谐的小懒猪完成签到 ,获得积分10
14秒前
15秒前
玉9989完成签到,获得积分10
15秒前
16秒前
Aimee完成签到 ,获得积分10
16秒前
许启帆发布了新的文献求助10
16秒前
毛豆应助Composer采纳,获得10
17秒前
米格发布了新的文献求助10
17秒前
18秒前
舒心丹亦发布了新的文献求助10
19秒前
19秒前
CipherSage应助123采纳,获得10
20秒前
cocolu给胖胖橘的求助进行了留言
20秒前
天天快乐应助jxinxxx采纳,获得30
20秒前
我想开兰博完成签到,获得积分10
22秒前
24秒前
cx完成签到,获得积分20
24秒前
lulu完成签到 ,获得积分10
27秒前
蝈蝈完成签到,获得积分10
27秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433975
求助须知:如何正确求助?哪些是违规求助? 3031178
关于积分的说明 8941204
捐赠科研通 2719199
什么是DOI,文献DOI怎么找? 1491676
科研通“疑难数据库(出版商)”最低求助积分说明 689392
邀请新用户注册赠送积分活动 685523