An Improved Approach for Small Object Detection in Hyperspectral Images

高光谱成像 人工智能 像素 计算机科学 预处理器 模式识别(心理学) 目标检测 图像(数学) 图像分辨率 计算机视觉 似然比检验 数学 统计
作者
Ömer Özdil,Yunus Emre Esin,Safak Öztürk
标识
DOI:10.1109/iceee55327.2022.9772535
摘要

Due to the fact hyperspectral cameras have low spatial resolution values, small target detection becomes a challenging task. In this study, a new method was proposed to detect small targets with high performance values. For target detection algorithms, it is very important to extract the accurate statistical informations of the image. In particular, accurate background information is very important for the Generalized Likelihood Ratio Test (GLRT). In order to extract these statistics correctly, the number of pixels of the image should not be too many or too few. For this reason, the hyperspectral image passed through the preprocessing steps and the image is divided into small tiles depending on the target dimensions to be detected. The target detection algorithm is performed separately on each of the tile components. In this way, the number of pixels from which the background information of the image is extracted is limited. Then, the target detection results obtained from the small pieces are combined and a general result map is obtained. The tests were performed on 3 different targets in 2 different images. When the results were evaluated, it was observed that the detection performance values obtained using the proposed method were higher than the detection performance values obtained using the GLRT algorithm on the whole image.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
约定发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
实验室应助IVENG采纳,获得30
1秒前
bayes111完成签到,获得积分20
1秒前
桐桐应助qin123采纳,获得10
1秒前
2秒前
彪壮的绿蕊应助neversay4ever采纳,获得10
3秒前
小明发布了新的文献求助10
3秒前
mulidexin2021完成签到,获得积分0
3秒前
4秒前
白白SAMA123发布了新的文献求助10
4秒前
1111完成签到,获得积分10
4秒前
隐形曼青应助cathylll采纳,获得10
4秒前
刚刚好发布了新的文献求助10
4秒前
summer完成签到,获得积分20
5秒前
bayes111发布了新的文献求助30
5秒前
梦曦完成签到,获得积分10
6秒前
自然沁完成签到,获得积分10
6秒前
慕青应助whuyyz采纳,获得10
7秒前
penghuiye完成签到,获得积分10
7秒前
spc68应助XLin采纳,获得10
8秒前
完美世界应助科研不通畅采纳,获得10
8秒前
粗心的小刺猬完成签到,获得积分10
8秒前
深情安青应助大力水手采纳,获得10
9秒前
路戳戳应助等待的乐儿采纳,获得10
9秒前
10秒前
11秒前
yu完成签到,获得积分10
11秒前
丘比特应助CXX采纳,获得10
11秒前
舒心雅山完成签到,获得积分20
12秒前
天天快乐应助谨慎的静竹采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
等待的乐儿完成签到,获得积分20
14秒前
zgy1106完成签到,获得积分10
15秒前
www完成签到,获得积分10
15秒前
势不可挡完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709417
求助须知:如何正确求助?哪些是违规求助? 5194819
关于积分的说明 15256984
捐赠科研通 4862196
什么是DOI,文献DOI怎么找? 2609928
邀请新用户注册赠送积分活动 1560336
关于科研通互助平台的介绍 1518058