An Improved Approach for Small Object Detection in Hyperspectral Images

高光谱成像 人工智能 像素 计算机科学 预处理器 模式识别(心理学) 目标检测 图像(数学) 图像分辨率 计算机视觉 似然比检验 数学 统计
作者
Ömer Özdil,Yunus Emre Esin,Safak Öztürk
标识
DOI:10.1109/iceee55327.2022.9772535
摘要

Due to the fact hyperspectral cameras have low spatial resolution values, small target detection becomes a challenging task. In this study, a new method was proposed to detect small targets with high performance values. For target detection algorithms, it is very important to extract the accurate statistical informations of the image. In particular, accurate background information is very important for the Generalized Likelihood Ratio Test (GLRT). In order to extract these statistics correctly, the number of pixels of the image should not be too many or too few. For this reason, the hyperspectral image passed through the preprocessing steps and the image is divided into small tiles depending on the target dimensions to be detected. The target detection algorithm is performed separately on each of the tile components. In this way, the number of pixels from which the background information of the image is extracted is limited. Then, the target detection results obtained from the small pieces are combined and a general result map is obtained. The tests were performed on 3 different targets in 2 different images. When the results were evaluated, it was observed that the detection performance values obtained using the proposed method were higher than the detection performance values obtained using the GLRT algorithm on the whole image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小蓝发布了新的文献求助10
2秒前
科研通AI5应助allen7u采纳,获得10
2秒前
完美世界应助单薄二娘采纳,获得10
2秒前
冯俊驰发布了新的文献求助10
2秒前
2秒前
李健应助zhangjianan采纳,获得10
2秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
桐桐应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得30
4秒前
乐乐应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
wswswsws应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
周鑫喆完成签到 ,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得30
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
加菲丰丰应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
大模型应助yeandpeng采纳,获得10
6秒前
赘婿应助小超采纳,获得10
7秒前
oooiilikk发布了新的文献求助10
7秒前
Mxaxxxx发布了新的文献求助10
7秒前
Lucas应助小房子采纳,获得10
8秒前
科研通AI5应助王迪采纳,获得30
8秒前
田様应助Hikah采纳,获得10
8秒前
彭于晏应助整齐凌萱采纳,获得10
8秒前
10秒前
10秒前
10秒前
12秒前
沉静盼山完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408