Using real-time manufacturing data to schedule a smart factory via reinforcement learning

计算机科学 调度(生产过程) 动态优先级调度 聚类分析 自编码 强化学习 两级调度 遗传算法调度 公平份额计划 分布式计算 人工智能 数据挖掘 人工神经网络 工业工程 地铁列车时刻表 工程类 运营管理 操作系统
作者
Wenbin Gu,Yuxin Li,Dunbing Tang,Xianliang Wang,Minghai Yuan
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:171: 108406-108406 被引量:15
标识
DOI:10.1016/j.cie.2022.108406
摘要

• Design a cyber-physical architecture and scheduling mechanism for smart factory. • Establish a genetic-programming-based scheduling rule library. • Develop a module to realize the dimension reduction and clustering of data. • Use RL to train the decision-making agent for appropriate rule selection. Under the background of intelligent manufacturing, internet of things and other information technologies have accumulated a large amount of data for manufacturing system. However, the traditional scheduling methods often ignore the production law and knowledge hidden in the manufacturing data. Therefore, this paper proposes a cyber-physical architecture and a communication protocol for smart factory, and a multiagent-system-based dynamic scheduling mechanism is given using contract net protocol. In the dynamic scheduling mechanism, the problem formulation module and scheduling point module are designed first. Then, a genetic programming (GP) method is proposed to form sixteen high-quality rules, which constitute the scheduling rule library. Meanwhile, combining with autoencoder, self-organizing mapping neural network and k-means clustering algorithm, the state clustering module is designed to realize the efficient clustering of production attribute vector. Moreover, an improved Q-learning algorithm is used to train the GP rule selector, so that the decision-making agent can choose the appropriate GP rule according to the production state at each scheduling point. Finally, the experimental results show that the proposed method has feasibility and superiority compared with other methods in real-time scheduling, and can effectively deal with disturbance events in the manufacturing process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddd完成签到,获得积分10
1秒前
李健的小迷弟应助xuan采纳,获得10
2秒前
英姑应助look采纳,获得10
2秒前
3秒前
细腻白柏完成签到,获得积分10
3秒前
zyb发布了新的文献求助10
3秒前
6秒前
面包会有的完成签到,获得积分10
8秒前
9秒前
9秒前
宜一完成签到 ,获得积分10
10秒前
11秒前
wanz完成签到,获得积分20
11秒前
梁嘉琪发布了新的文献求助10
11秒前
12秒前
14秒前
科研小民工应助Cassiel采纳,获得30
14秒前
小灰狼发布了新的文献求助10
14秒前
哦啦啦发布了新的文献求助10
14秒前
洛锋灵发布了新的文献求助10
15秒前
思源应助润润轩轩采纳,获得10
17秒前
科研通AI5应助汤姆采纳,获得30
17秒前
17秒前
18秒前
19秒前
人生苦短完成签到,获得积分10
20秒前
华仔应助认真的映安采纳,获得10
20秒前
爆米花应助森气采纳,获得10
20秒前
21秒前
21秒前
科研通AI2S应助巫马尔槐采纳,获得10
22秒前
Luffa完成签到,获得积分10
23秒前
勤恳的鲂发布了新的文献求助10
24秒前
Kloria关注了科研通微信公众号
24秒前
汤汤发布了新的文献求助10
24秒前
26秒前
26秒前
彭于晏应助flywolfg采纳,获得10
27秒前
27秒前
高高应助我要资料啊采纳,获得10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526093
求助须知:如何正确求助?哪些是违规求助? 3106509
关于积分的说明 9280568
捐赠科研通 2804080
什么是DOI,文献DOI怎么找? 1539235
邀请新用户注册赠送积分活动 716514
科研通“疑难数据库(出版商)”最低求助积分说明 709478