已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning in the stock market—a systematic survey of practice, backtesting, and applications

计算机科学 文件夹 波动性(金融) 主流 深度学习 库存(枪支) 股票市场 金融市场 人工智能 机器学习 数据科学 计量经济学 背景(考古学) 财务 经济 工程类 哲学 古生物学 生物 机械工程 神学
作者
Kenniy Olorunnimbe,Herna L. Viktor
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:56 (3): 2057-2109 被引量:12
标识
DOI:10.1007/s10462-022-10226-0
摘要

Abstract The widespread usage of machine learning in different mainstream contexts has made deep learning the technique of choice in various domains, including finance. This systematic survey explores various scenarios employing deep learning in financial markets, especially the stock market. A key requirement for our methodology is its focus on research papers involving backtesting. That is, we consider whether the experimentation mode is sufficient for market practitioners to consider the work in a real-world use case. Works meeting this requirement are distributed across seven distinct specializations. Most studies focus on trade strategy, price prediction, and portfolio management, with a limited number considering market simulation, stock selection, hedging strategy, and risk management. We also recognize that domain-specific metrics such as “returns” and “volatility” appear most important for accurately representing model performance across specializations. Our study demonstrates that, although there have been some improvements in reproducibility, substantial work remains to be done regarding model explainability. Accordingly, we suggest several future directions, such as improving trust by creating reproducible, explainable, and accountable models and emphasizing prediction of longer-term horizons—potentially via the utilization of supplementary data—which continues to represent a significant unresolved challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无与伦比完成签到 ,获得积分10
1秒前
直率千万发布了新的文献求助10
3秒前
jueshadi发布了新的文献求助10
3秒前
良药发布了新的文献求助10
5秒前
大气金毛完成签到 ,获得积分10
8秒前
9秒前
彦子完成签到 ,获得积分10
13秒前
辣椒发布了新的文献求助10
14秒前
wisher完成签到 ,获得积分10
15秒前
访云完成签到,获得积分10
16秒前
苏鱼完成签到 ,获得积分10
16秒前
真的不会完成签到,获得积分10
17秒前
周杰完成签到,获得积分10
18秒前
Cosmosurfer完成签到,获得积分10
19秒前
良药完成签到,获得积分10
19秒前
研友_Y59785应助超级月饼采纳,获得10
20秒前
22秒前
ppg123应助科研通管家采纳,获得10
23秒前
ppg123应助科研通管家采纳,获得10
23秒前
ppg123应助科研通管家采纳,获得10
23秒前
yx_cheng应助科研通管家采纳,获得30
23秒前
ppg123应助科研通管家采纳,获得10
23秒前
ppg123应助科研通管家采纳,获得10
23秒前
zsc668完成签到 ,获得积分10
23秒前
ppg123应助科研通管家采纳,获得10
23秒前
ppg123应助科研通管家采纳,获得10
23秒前
ppg123应助科研通管家采纳,获得10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
Akim应助辣椒采纳,获得10
24秒前
ppg123应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
自然秋双完成签到 ,获得积分10
25秒前
XIXI发布了新的文献求助10
25秒前
26秒前
打打应助访云采纳,获得10
31秒前
科目三应助XIXI采纳,获得30
33秒前
33秒前
超级月饼完成签到,获得积分10
42秒前
XIXI完成签到,获得积分20
48秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994866
求助须知:如何正确求助?哪些是违规求助? 3534988
关于积分的说明 11266966
捐赠科研通 3274824
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809762