材料科学
非阻塞I/O
超级电容器
煅烧
介孔材料
纳米技术
电极
氧化物
氧化镍
制作
多孔性
纳米材料
电化学
退火(玻璃)
化学工程
功率密度
微观结构
电流密度
复合材料
冶金
催化作用
化学
医学
生物化学
替代医学
功率(物理)
物理
物理化学
病理
量子力学
工程类
作者
Ying Wei,Yuwei Wu,Xiao‐Man Cao,Luxia Cui,Jiaqi Chen,Qiong Wu,Daliang Liu,Zhijia Sun,Qingguo Zhang
标识
DOI:10.1002/celc.202200462
摘要
Abstract The rational tailoring of micro‐ and mesoporous distribution for porous transition metal oxide‐based nanomaterials is an important factor to control their electrochemistry performances. Herein, flower‐like hierarchical microspheres assembled by ultrathin nickel oxide (NiO) nanosheets were synthesized by a facile solvothermal route and subsequent annealing process. Theoretical analysis and experimental results demonstrate that NiO ultrathin nanosheets prepared by calcination at 450 °C (N‐450) have the optimal micro‐ and mesoporous distribution. The optimal microstructure provides plenty of ion transport channels and abundant active sites. As expected, the N‐450 electrode delivers an ultrahigh specific capacity of 546.53 F g −1 at a current density of 2 A g −1 , which is greater than other electrodes. Remarkably, the assembled N‐450//AC asymmetric supercapacitor (ASC) achieves a high energy density of 29.7 Wh kg −1 (at a power density of 800 W kg −1 ) and exhibits an excellent cycling stability. This work demonstrates an available avenue to enhance the performance of supercapacitor by accurately controlling calcination temperature to adjust the porous architectures of ultrathin NiO nanosheets.
科研通智能强力驱动
Strongly Powered by AbleSci AI