Early Drug-Induced Liver Injury Risk Screening: “Free,” as Good as It Gets

广告 接收机工作特性 药品 加药 药理学 肝损伤 预测值 医学 机器学习 计算机科学 内科学
作者
Matthew T. Martin,Petra Koza-Taylor,Li Di,Eric D. Watt,Christopher E. Keefer,Daniel J. Smaltz,Jon C. Cook,Jonathan P. Jackson
出处
期刊:Toxicological Sciences [Oxford University Press]
卷期号:188 (2): 208-218 被引量:3
标识
DOI:10.1093/toxsci/kfac054
摘要

Abstract For all the promise of and need for clinical drug-induced liver injury (DILI) risk screening systems, demonstrating the predictive value of these systems versus readily available physicochemical properties and inherent dosing information has not been thoroughly evaluated. Therefore, we utilized a systematic approach to evaluate the predictive value of in vitro safety assays including bile salt export pump transporter inhibition and cytotoxicity in HepG2 and transformed human liver epithelial along with physicochemical properties. We also evaluated the predictive value of in vitro ADME assays including hepatic partition coefficient (Kp) and its unbound counterpart because they provide insight on hepatic accumulation potential. The datasets comprised of 569 marketed drugs with FDA DILIrank annotation (most vs less/none), dose and physicochemical information, 384 drugs with Kp and plasma protein binding data, and 279 drugs with safety assay data. For each dataset and combination of input parameters, we developed random forest machine learning models and measured model performance using the receiver operator characteristic area under the curve (ROC AUC). The median ROC AUC across the various data and parameters sets ranged from 0.67 to 0.77 with little evidence of additive predictivity when including safety or ADME assay data. Subsequent machine learning models consistently demonstrated daily dose, fraction sp3 or ionization, and cLogP/D inputs produced the best, simplest model for predicting clinical DILI risk with an ROC AUC of 0.75. This systematic framework should be used for future assay predictive value assessments and highlights the need for continued improvements to clinical DILI risk annotation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助wary采纳,获得10
刚刚
上官若男应助wary采纳,获得10
刚刚
李爱国应助木子采纳,获得10
刚刚
烟花应助马佳凯采纳,获得10
刚刚
刚刚
LYL完成签到,获得积分10
1秒前
1秒前
得意凡人完成签到,获得积分10
1秒前
1秒前
害怕的擎宇完成签到,获得积分10
2秒前
柳絮完成签到,获得积分20
2秒前
3秒前
赫连烙发布了新的文献求助10
3秒前
目遇给目遇的求助进行了留言
4秒前
Arnold发布了新的文献求助10
5秒前
在九月完成签到 ,获得积分10
5秒前
selfevidbet发布了新的文献求助30
5秒前
通~发布了新的文献求助10
5秒前
靓仔完成签到,获得积分10
5秒前
妙手回春板蓝根完成签到,获得积分10
5秒前
6秒前
11完成签到,获得积分10
7秒前
1111完成签到,获得积分10
7秒前
777完成签到,获得积分10
8秒前
junzilan发布了新的文献求助10
8秒前
8秒前
sun应助leave采纳,获得20
8秒前
8秒前
9秒前
9秒前
Loooong应助小房子采纳,获得10
10秒前
10秒前
云_123完成签到,获得积分10
11秒前
hf发布了新的文献求助10
11秒前
11秒前
赫连烙完成签到,获得积分10
11秒前
小二郎应助整齐小猫咪采纳,获得10
12秒前
领导范儿应助愤怒的源智采纳,获得10
12秒前
李来仪发布了新的文献求助10
12秒前
wisteety发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762