Early Drug-Induced Liver Injury Risk Screening: “Free,” as Good as It Gets

广告 接收机工作特性 药品 加药 药理学 肝损伤 预测值 医学 机器学习 计算机科学 内科学
作者
Matthew T. Martin,Petra Koza-Taylor,Li Di,Eric D. Watt,Christopher E. Keefer,Daniel J. Smaltz,Jon C. Cook,Jonathan P. Jackson
出处
期刊:Toxicological Sciences [Oxford University Press]
卷期号:188 (2): 208-218 被引量:3
标识
DOI:10.1093/toxsci/kfac054
摘要

Abstract For all the promise of and need for clinical drug-induced liver injury (DILI) risk screening systems, demonstrating the predictive value of these systems versus readily available physicochemical properties and inherent dosing information has not been thoroughly evaluated. Therefore, we utilized a systematic approach to evaluate the predictive value of in vitro safety assays including bile salt export pump transporter inhibition and cytotoxicity in HepG2 and transformed human liver epithelial along with physicochemical properties. We also evaluated the predictive value of in vitro ADME assays including hepatic partition coefficient (Kp) and its unbound counterpart because they provide insight on hepatic accumulation potential. The datasets comprised of 569 marketed drugs with FDA DILIrank annotation (most vs less/none), dose and physicochemical information, 384 drugs with Kp and plasma protein binding data, and 279 drugs with safety assay data. For each dataset and combination of input parameters, we developed random forest machine learning models and measured model performance using the receiver operator characteristic area under the curve (ROC AUC). The median ROC AUC across the various data and parameters sets ranged from 0.67 to 0.77 with little evidence of additive predictivity when including safety or ADME assay data. Subsequent machine learning models consistently demonstrated daily dose, fraction sp3 or ionization, and cLogP/D inputs produced the best, simplest model for predicting clinical DILI risk with an ROC AUC of 0.75. This systematic framework should be used for future assay predictive value assessments and highlights the need for continued improvements to clinical DILI risk annotation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈富贵完成签到 ,获得积分10
1秒前
科研顺利发布了新的文献求助10
2秒前
天真的idiot完成签到 ,获得积分10
3秒前
shane完成签到 ,获得积分10
3秒前
3秒前
Owen应助画舫采纳,获得10
4秒前
旺仔不甜完成签到,获得积分10
6秒前
herococa应助南吕十八采纳,获得20
6秒前
Billy发布了新的文献求助10
6秒前
dbdxyty发布了新的文献求助10
7秒前
墨尘发布了新的文献求助30
7秒前
共享精神应助齐齐巴宾采纳,获得10
8秒前
付艳完成签到,获得积分10
11秒前
12秒前
科研顺利完成签到,获得积分10
12秒前
13秒前
瘦瘦谷兰完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
实验顺利完成签到,获得积分10
20秒前
zz发布了新的文献求助10
20秒前
1762571452完成签到,获得积分10
21秒前
李存完成签到,获得积分10
21秒前
22秒前
心灵美的代柔完成签到,获得积分10
24秒前
28秒前
李爱国应助问123采纳,获得10
30秒前
鱼生发布了新的文献求助10
30秒前
31秒前
周宋发布了新的文献求助10
33秒前
35秒前
轻松盼雁发布了新的文献求助10
36秒前
37秒前
40秒前
yar给饭神仙鱼的求助进行了留言
40秒前
Scherbatsky发布了新的文献求助10
40秒前
41秒前
充电宝应助油条咔咔咔采纳,获得10
41秒前
41秒前
青葙子关注了科研通微信公众号
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953094
求助须知:如何正确求助?哪些是违规求助? 3498438
关于积分的说明 11092087
捐赠科研通 3229062
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869242
科研通“疑难数据库(出版商)”最低求助积分说明 801415