Early Drug-Induced Liver Injury Risk Screening: “Free,” as Good as It Gets

广告 接收机工作特性 药品 加药 药理学 肝损伤 预测值 医学 机器学习 计算机科学 内科学
作者
Matthew T. Martin,Petra Koza-Taylor,Li Di,Eric D. Watt,Christopher E. Keefer,Daniel J. Smaltz,Jon C. Cook,Jonathan P. Jackson
出处
期刊:Toxicological Sciences [Oxford University Press]
卷期号:188 (2): 208-218 被引量:3
标识
DOI:10.1093/toxsci/kfac054
摘要

Abstract For all the promise of and need for clinical drug-induced liver injury (DILI) risk screening systems, demonstrating the predictive value of these systems versus readily available physicochemical properties and inherent dosing information has not been thoroughly evaluated. Therefore, we utilized a systematic approach to evaluate the predictive value of in vitro safety assays including bile salt export pump transporter inhibition and cytotoxicity in HepG2 and transformed human liver epithelial along with physicochemical properties. We also evaluated the predictive value of in vitro ADME assays including hepatic partition coefficient (Kp) and its unbound counterpart because they provide insight on hepatic accumulation potential. The datasets comprised of 569 marketed drugs with FDA DILIrank annotation (most vs less/none), dose and physicochemical information, 384 drugs with Kp and plasma protein binding data, and 279 drugs with safety assay data. For each dataset and combination of input parameters, we developed random forest machine learning models and measured model performance using the receiver operator characteristic area under the curve (ROC AUC). The median ROC AUC across the various data and parameters sets ranged from 0.67 to 0.77 with little evidence of additive predictivity when including safety or ADME assay data. Subsequent machine learning models consistently demonstrated daily dose, fraction sp3 or ionization, and cLogP/D inputs produced the best, simplest model for predicting clinical DILI risk with an ROC AUC of 0.75. This systematic framework should be used for future assay predictive value assessments and highlights the need for continued improvements to clinical DILI risk annotation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助shufessm采纳,获得10
刚刚
2秒前
2秒前
BYXGZ发布了新的文献求助30
3秒前
给阿硕的情书完成签到 ,获得积分10
3秒前
8R60d8应助Liu采纳,获得10
4秒前
5秒前
好困应助Ye13采纳,获得10
5秒前
zhangzhisenn完成签到,获得积分10
5秒前
6秒前
汉堡包应助wuaaaaa_L采纳,获得10
7秒前
7秒前
8秒前
batmanrobin完成签到,获得积分10
8秒前
LIDK完成签到,获得积分10
9秒前
mm发布了新的文献求助10
9秒前
Mark发布了新的文献求助10
10秒前
10秒前
Vesper完成签到 ,获得积分10
10秒前
11秒前
情怀应助Tammy采纳,获得10
11秒前
清爽冬莲发布了新的文献求助10
12秒前
高铁完成签到,获得积分10
12秒前
12秒前
13秒前
单薄惜文发布了新的文献求助10
13秒前
舍予舍予发布了新的文献求助10
13秒前
zho应助慈祥的翠桃采纳,获得10
14秒前
庞不凡完成签到 ,获得积分10
14秒前
小二郎应助CharlseFan采纳,获得10
15秒前
kendeng完成签到,获得积分10
15秒前
减肥为窈窕完成签到,获得积分10
16秒前
小李在哪儿完成签到 ,获得积分10
16秒前
浅笑安然发布了新的文献求助10
16秒前
zho发布了新的文献求助10
16秒前
17秒前
paper完成签到 ,获得积分10
17秒前
18秒前
卡皮巴拉完成签到,获得积分10
18秒前
majiko完成签到,获得积分10
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236817
求助须知:如何正确求助?哪些是违规求助? 2882327
关于积分的说明 8226641
捐赠科研通 2550532
什么是DOI,文献DOI怎么找? 1379263
科研通“疑难数据库(出版商)”最低求助积分说明 648565
邀请新用户注册赠送积分活动 624170