Liquid-like VASP condensates drive actin polymerization and dynamic bundling

蛋白质丝 丝状体 肌动蛋白 捆绑 踏步 生物物理学 化学 材料科学 微丝 细胞骨架 生物 细胞 复合材料 生物化学
作者
Kristin Graham,Aravind Chandrasekaran,Liping Wang,Aly Ladak,Eileen M. Lafer,Padmini Rangamani,Jeanne C. Stachowiak
标识
DOI:10.1101/2022.05.09.491236
摘要

ABSTRACT The organization of actin filaments into bundles is required for cellular processes such as motility, morphogenesis, and cell division. Filament bundling is controlled by a network of actin binding proteins. Recently, several proteins that comprise this network have been found to undergo liquid-liquid phase separation. How might liquid-like condensates contribute to filament bundling? Here, we show that the processive actin polymerase and bundling protein, VASP, forms liquid-like droplets under physiological conditions. As actin polymerizes within VASP droplets, elongating filaments partition to the edges of the droplet to minimize filament curvature, forming an actin-rich ring within the droplet. The rigidity of this ring is balanced by the droplet’s surface tension, as predicted by a continuum-scale computational model. However, as actin polymerizes and the ring grows thicker, its rigidity increases and eventually overcomes the surface tension of the droplet, deforming into a linear bundle. The resulting bundles contain long, parallel actin filaments that grow from their tips. Significantly, the fluid nature of the droplets is critical for bundling, as more solid droplets resist deformation, preventing filaments from rearranging to form bundles. Once the parallel arrangement of filaments is created within a VASP droplet, it propagates through the addition of new actin monomers to achieve a length that is many times greater than the initial droplet. This droplet-based mechanism of bundling may be relevant to the assembly of cellular architectures rich in parallel actin filaments, such as filopodia, stress fibers, and focal adhesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
yznfly应助微微采纳,获得20
1秒前
自觉荔枝发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
VVV然发布了新的文献求助30
3秒前
caili发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
6秒前
闪闪书竹发布了新的文献求助10
6秒前
顺心含蕾完成签到,获得积分10
6秒前
田甜甜完成签到 ,获得积分10
7秒前
Lulu发布了新的文献求助10
7秒前
9秒前
kyt732发布了新的文献求助10
9秒前
ttg990720发布了新的文献求助10
10秒前
10秒前
王木木发布了新的文献求助10
11秒前
12秒前
13秒前
wu发布了新的文献求助10
13秒前
快乐的尔白完成签到,获得积分10
14秒前
15秒前
韩美女发布了新的文献求助10
17秒前
18秒前
ding应助王木木采纳,获得50
18秒前
情怀应助清爽的芷蕾采纳,获得10
19秒前
20秒前
要减肥山槐完成签到,获得积分10
20秒前
21秒前
勇者义彦发布了新的文献求助10
21秒前
隐形曼青应助cenghao采纳,获得10
22秒前
鱼刺鱼刺卡完成签到,获得积分10
22秒前
quup发布了新的文献求助20
22秒前
开朗黑猫完成签到,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605551
求助须知:如何正确求助?哪些是违规求助? 4690129
关于积分的说明 14862295
捐赠科研通 4701787
什么是DOI,文献DOI怎么找? 2542138
邀请新用户注册赠送积分活动 1507793
关于科研通互助平台的介绍 1472113