Liquid-like VASP condensates drive actin polymerization and dynamic bundling

蛋白质丝 丝状体 肌动蛋白 捆绑 踏步 生物物理学 化学 材料科学 微丝 细胞骨架 生物 细胞 复合材料 生物化学
作者
Kristin Graham,Aravind Chandrasekaran,Liping Wang,Aly Ladak,Eileen M. Lafer,Padmini Rangamani,Jeanne C. Stachowiak
标识
DOI:10.1101/2022.05.09.491236
摘要

ABSTRACT The organization of actin filaments into bundles is required for cellular processes such as motility, morphogenesis, and cell division. Filament bundling is controlled by a network of actin binding proteins. Recently, several proteins that comprise this network have been found to undergo liquid-liquid phase separation. How might liquid-like condensates contribute to filament bundling? Here, we show that the processive actin polymerase and bundling protein, VASP, forms liquid-like droplets under physiological conditions. As actin polymerizes within VASP droplets, elongating filaments partition to the edges of the droplet to minimize filament curvature, forming an actin-rich ring within the droplet. The rigidity of this ring is balanced by the droplet’s surface tension, as predicted by a continuum-scale computational model. However, as actin polymerizes and the ring grows thicker, its rigidity increases and eventually overcomes the surface tension of the droplet, deforming into a linear bundle. The resulting bundles contain long, parallel actin filaments that grow from their tips. Significantly, the fluid nature of the droplets is critical for bundling, as more solid droplets resist deformation, preventing filaments from rearranging to form bundles. Once the parallel arrangement of filaments is created within a VASP droplet, it propagates through the addition of new actin monomers to achieve a length that is many times greater than the initial droplet. This droplet-based mechanism of bundling may be relevant to the assembly of cellular architectures rich in parallel actin filaments, such as filopodia, stress fibers, and focal adhesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小旭呀发布了新的文献求助10
1秒前
2秒前
shisui发布了新的文献求助20
2秒前
123完成签到,获得积分10
3秒前
wanci应助light采纳,获得30
3秒前
兴奋小林完成签到,获得积分10
4秒前
qq完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
Lucas应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
谢许杯商应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得30
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
谢许杯商应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
田様应助阿甲采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014