A high throughput screening model of solidophilic flotation reagents for chalcopyrite based on quantum chemistry calculations and machine learning

试剂 化学 溶剂化 分子 量子化学 计算化学 物理化学 有机化学 超分子化学
作者
Jianyong He,Li Wang,Chenyang Zhang,Wei Sun,Zhigang Yin,Hongliang Zhang,Daixiong Chen,Yong Pei
出处
期刊:Minerals Engineering [Elsevier]
卷期号:177: 107375-107375 被引量:18
标识
DOI:10.1016/j.mineng.2021.107375
摘要

Flotation reagents are critical to realizing selective separation of different minerals in the flotation process. The current “trial and error” strategy for screening effective flotation reagents is time-consuming and inefficient. Herein, a combined machine learning (ML) + quantum chemistry (QC) model has been proposed to accelerate the screening of solidophilic flotation reagents. The accurate QC features of an ethyl-functional group (EFG) set involving 47 molecules have been obtained and collected as a database to describe their bonding reactions with the surface Cu(II), Fe(II), and Cu(I) ions at the B3LYP/def2-TZVP level under solvation effects. 15 QC feature descriptors and 4 ML algorithms have been adopted to establish the high throughput ML screening. QC results show the affinity of EFG molecule with Cu(II) is the strongest, followed by Fe(II), and the weakest is Cu(I). ML results show that the gradient boosting regression can successfully predict these molecules with the highest selective bonding index. The atom type, frontier molecular orbital, molecule charge, and dipole moment have significant effects on the bonding interactions. ML has shown an extremely lower time cost than the QC-based models. This work sheds new light on the development and discovery of efficient, selective, and green flotation reagents by accurate and low-cost artificial intelligence-based computational methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
微笑书双完成签到,获得积分10
3秒前
bgbgbg完成签到,获得积分20
4秒前
蓝桉树完成签到,获得积分10
5秒前
6秒前
0_0完成签到,获得积分10
6秒前
buno应助shade66666采纳,获得10
6秒前
花傲天应助盛夏如花采纳,获得10
7秒前
8秒前
ZZICU完成签到,获得积分10
10秒前
11秒前
13秒前
orixero应助YY采纳,获得10
13秒前
开心发布了新的文献求助10
14秒前
14秒前
淡然的钢笔完成签到,获得积分10
15秒前
wanci应助又喝多了采纳,获得10
15秒前
16秒前
Evan完成签到 ,获得积分10
16秒前
今天吃什么完成签到,获得积分10
17秒前
枯木逢春应助伤心猪大肠采纳,获得10
17秒前
yoona发布了新的文献求助10
19秒前
19秒前
禾平发布了新的文献求助10
19秒前
一条热带鱼完成签到,获得积分10
20秒前
sb发布了新的文献求助10
21秒前
21秒前
舒适亦凝发布了新的文献求助10
22秒前
jevon应助刘鑫尧采纳,获得10
22秒前
Orange应助Aries采纳,获得20
22秒前
puyuanting发布了新的文献求助10
22秒前
23秒前
Janel完成签到,获得积分10
23秒前
天天快乐应助刘斌采纳,获得10
24秒前
24秒前
明理嫣发布了新的文献求助10
25秒前
李爱国应助舒适亦凝采纳,获得10
26秒前
pinge发布了新的文献求助10
26秒前
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233417
求助须知:如何正确求助?哪些是违规求助? 2879936
关于积分的说明 8213289
捐赠科研通 2547370
什么是DOI,文献DOI怎么找? 1376892
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623144