Applying machine learning algorithms to electronic health records to predict pneumonia after respiratory tract infection

逻辑回归 推车 医学 肺炎 呼吸道感染 机器学习 社区获得性肺炎 人口 随机森林 人工智能 内科学 计算机科学 呼吸系统 机械工程 环境卫生 工程类
作者
Xiaohui Sun,Abdel Douiri,Martin Gulliford
出处
期刊:Journal of Clinical Epidemiology [Elsevier BV]
卷期号:145: 154-163 被引量:18
标识
DOI:10.1016/j.jclinepi.2022.01.009
摘要

Objectives To predict community acquired pneumonia after respiratory tract infection (RTI) consultations in primary care by applying machine learning to electronic health records. Study design and Setting A population-based cohort study was conducted using primary care electronic health records between 2002 to 2017. Sixteen thousand two hundred eighty-nine patients who consulted with RTIs then subsequently diagnosed with pneumonia within 30 days were compared with a random sample of eligible RTI patients. Variable selection compared logistic regression, random forest and penalized regression models. Prediction models were developed using classification and regression trees (CART) and logistic regression. Model performance was assessed through internal and temporal validations. Results Older age, comorbidity, and initial presentation with lower respiratory tract infection (LRTIs) were identified as the main predictors of pneumonia diagnosis. Developed models achieved good discrimination accuracy with AUROC for the logistic regression model being 0.81 (0.80, 0.84) and 0.70 (0.69, 0.71) for CART during internal validation, and 0.80 (0.79, 0.81) vs. 0.68 (0.67, 0.69) for temporal validation. Conclusion From a large number of candidate variables, a small number of predictors of pneumonia were consistently identified through machine learning variable selection procedures. Logistic regression generally provided better model performance than CART models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助绛川采纳,获得10
刚刚
量子星尘发布了新的文献求助10
2秒前
2秒前
CAOHOU应助sue采纳,获得10
3秒前
3秒前
Loik完成签到,获得积分10
6秒前
6秒前
苗条梦玉发布了新的文献求助10
7秒前
7秒前
7秒前
12秒前
绛川发布了新的文献求助10
13秒前
momo发布了新的文献求助10
14秒前
搜集达人应助潘善若采纳,获得10
14秒前
yyer发布了新的文献求助10
15秒前
实心小墩墩完成签到,获得积分10
17秒前
22秒前
23秒前
香蕉觅云应助su采纳,获得10
23秒前
深情安青应助momo采纳,获得10
25秒前
25秒前
26秒前
可爱的函函应助hu采纳,获得10
28秒前
28秒前
29秒前
ABS发布了新的文献求助10
29秒前
30秒前
FashionBoy应助忘记时间采纳,获得30
31秒前
爆米花应助无情的匪采纳,获得10
32秒前
33秒前
刘寄奴发布了新的文献求助10
34秒前
su发布了新的文献求助10
36秒前
深情安青应助胡航航采纳,获得10
37秒前
小小发布了新的文献求助30
38秒前
CodeCraft应助苗条梦玉采纳,获得10
39秒前
jia完成签到 ,获得积分10
40秒前
43秒前
43秒前
44秒前
Ava应助坚定路人采纳,获得10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158