Applying machine learning algorithms to electronic health records to predict pneumonia after respiratory tract infection

逻辑回归 推车 医学 肺炎 呼吸道感染 机器学习 社区获得性肺炎 人口 随机森林 人工智能 内科学 计算机科学 呼吸系统 机械工程 环境卫生 工程类
作者
Xiaohui Sun,Abdel Douiri,Martin Gulliford
出处
期刊:Journal of Clinical Epidemiology [Elsevier]
卷期号:145: 154-163 被引量:18
标识
DOI:10.1016/j.jclinepi.2022.01.009
摘要

Objectives To predict community acquired pneumonia after respiratory tract infection (RTI) consultations in primary care by applying machine learning to electronic health records. Study design and Setting A population-based cohort study was conducted using primary care electronic health records between 2002 to 2017. Sixteen thousand two hundred eighty-nine patients who consulted with RTIs then subsequently diagnosed with pneumonia within 30 days were compared with a random sample of eligible RTI patients. Variable selection compared logistic regression, random forest and penalized regression models. Prediction models were developed using classification and regression trees (CART) and logistic regression. Model performance was assessed through internal and temporal validations. Results Older age, comorbidity, and initial presentation with lower respiratory tract infection (LRTIs) were identified as the main predictors of pneumonia diagnosis. Developed models achieved good discrimination accuracy with AUROC for the logistic regression model being 0.81 (0.80, 0.84) and 0.70 (0.69, 0.71) for CART during internal validation, and 0.80 (0.79, 0.81) vs. 0.68 (0.67, 0.69) for temporal validation. Conclusion From a large number of candidate variables, a small number of predictors of pneumonia were consistently identified through machine learning variable selection procedures. Logistic regression generally provided better model performance than CART models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘟嘟发布了新的文献求助10
刚刚
1秒前
苏照杭应助jym采纳,获得10
1秒前
1秒前
1秒前
眼睛大又蓝完成签到,获得积分10
1秒前
kangkang完成签到,获得积分10
1秒前
2秒前
2秒前
绵绵完成签到,获得积分10
2秒前
3秒前
Mlwwq完成签到,获得积分10
3秒前
3秒前
小皮蛋儿完成签到,获得积分10
3秒前
lyn发布了新的文献求助10
3秒前
JUSTs0so完成签到,获得积分10
4秒前
失联者完成签到,获得积分10
4秒前
感性的神级完成签到,获得积分10
4秒前
眯眯眼的谷冬完成签到 ,获得积分10
4秒前
4秒前
花莫凋零发布了新的文献求助10
5秒前
szh123完成签到,获得积分10
5秒前
5秒前
安息香发布了新的文献求助10
5秒前
核桃完成签到,获得积分10
5秒前
丹dan发布了新的文献求助10
5秒前
5秒前
科研通AI5应助大方嵩采纳,获得10
6秒前
6秒前
HYG发布了新的文献求助30
6秒前
6秒前
宝贝发布了新的文献求助10
6秒前
FashionBoy应助tulip采纳,获得10
6秒前
万泉部诗人完成签到,获得积分10
7秒前
文静千愁发布了新的文献求助10
7秒前
YAN发布了新的文献求助10
7秒前
马洛发布了新的文献求助10
7秒前
7秒前
qiqi完成签到,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762