ISFET
材料科学
光电子学
纳米技术
电子工程
电气工程
晶体管
工程类
场效应晶体管
电压
作者
Mahdieh Shojaei Baghini,Anastasios Vilouras,Ravinder Dahiya
标识
DOI:10.1109/tbcas.2022.3141553
摘要
This paper presents ISFET array based pH-sensing system-on-ultra-thin-chip (SoUTC) designed and fabricated in 350 nm CMOS technology. The SoUTC with the proposed current-mode active-pixel ISFET circuit array is desined to operate at 2 V and consumes 6.28 μW per-pixel. The presented SoUTC exhibits low sensitivity to process, voltage, temperature and strain-induced (PVTS) variations. The silicon area occupancy of each active-pixel is 44.9 × 33.5 µm2 with an ion-sensing area of 576 µm2. The design of presented ISFET device is analysed with finite element modeling in COMSOL Multiphysics using compact model parameters of MOSFET in 350 nm CMOS technology. Owing to thin (∼30 µm) Si-substrate the presented SoUTC can conform to curvilinear surfaces, allowing intimate contact necessary for reliable data for monitoring of analytes in body fluids such as sweat. Further, it can operate either in a rolling shutter fashion or in a pseudo-random pixel selection mode allowing the simultaneous detection of pH from different skin regions. Finally, the circuits have been tested in aqueous Dulbecco's Modified Eagle Medium (DMEM) culture media with 5-9 pH values, which mimics cellular environments, to demonstrate their potential use for continuous monitoring of body-fluids pH.
科研通智能强力驱动
Strongly Powered by AbleSci AI