清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MO867: Confirmatory Factor Analysis and Computer Adaptive Testing System Prototype Based on Multidimensional Item Response Theory of KDQOL-36 Among a Large Sample of Spanish Dialysis Patients

医学 项目反应理论 验证性因素分析 肾脏疾病 透析 观察研究 生活质量(医疗保健) 考试(生物学) 心理测量学 重症监护医学 结构方程建模 计算机科学 临床心理学 外科 内科学 机器学习 护理部 生物 古生物学
作者
Luca Neri,Jasmine Ion Titapiccolo,Francesco Bellocchio,Abraham Rincón Bello,Ana Lopez Herradon,Cristina Cerezo,Isabel Berdud-Godoy,Clarencio Cebrián Andrada,Maria Eva Baró Salvador,Federica Gervasoni,Rosa Ramos Sanchez,Stefano Stuard
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:37 (Supplement_3)
标识
DOI:10.1093/ndt/gfac083.049
摘要

Abstract BACKGROUND AND AIMS The Kidney Disease Quality of Life (KDQOL™-36) is widely used to assess the quality of life of dialysis patients worldwide. It combines disease-specific and generic scales capturing unique facets of patients’ adaptation to the physical and mental burden of renal disease and dialysis treatment. the KDQOL™-36 psychometric properties and cross-national validation have been subject to intense review in latest years suggesting mixed replicability in different populations. Furthermore, its length may hamper its wider use in clinical practice as respondent burden may be substantial if used longitudinally within continuous quality improvement programs. Therefore, we sought to evaluate its measurement properties and develop an item response theory model enabling personalized survey administration while maximizing measurement efficiency. METHOD This is a retrospective, observational analysis of Patient-Reported Outcomes Measures (PROM) collected in Spanish NephroCare clinics during 2019 as part of a continuous quality improvement program launched by the country medical director of Spain. We used Multidimensional Item Response Theory (MIRT) models to confirm the theoretical factor structure underlying the measurement model of KDQOL™-36. MIRT extends classical IRT in that it allows complex factor structures in the multifactorial space. A critical advantage of scoring systems based on MIRT models over classical test theory models is the ability to personalize survey administration based on patient's characteristics and previous responses, reduction of measurement error, objective calibration, evaluation of test and item bias, greater accuracy in the assessment of change due to therapeutic intervention, and evaluation of model and person fit. We specified 4 competitive theoretical models for the SF-12 and the disease-specific KDQOL items (Figure 1). First, we fitted a unidimensional model, to exclude that one single factor could explain the response pattern of the questionnaire. Second, we tested a two-factor (or three-factor) orthogonal model for the SF-12 (and disease-specific KDQOL) to account for the standard scoring structure of the KDQOL™-36 questionnaire. Third, we tested the hypothesis of correlated two-factor (or three-factor) structure. Fourth, we tested a bifactor model structure, which accounts for a general HRQOL latent construct as well as lower order dimensions tapping specific dimensions of health. We expect the bifactor model would capture the pleiotropic effect of ESKD on patients’ life adjustment. We compared model fit with RMSEA, CFI and TLI statistics. For illustrative purposes, we simulated MIRT-based adaptive testing using different Delta Thetas as stopping rules to assesses measurement efficiency for the SF-12 component of the questionnaire. RESULTS Among patients completing the survey in the 2019 ePROM Spanish wave, 1838 (80.6%) dialysis prevalent patients met the inclusion criteria for the present analysis. Mean age was 68.8 ± 14.4, 60% were men, 65% had an arteriovenous fistula, and 66% were on HDF. For both generic and disease-specific KDQOL-36 components, the bifactor model significantly improved empirical fit (Figure 1). Despite slightly inferior compared with the bifactor model solutions, a simpler correlated second-order factor solution showed acceptable model fit. CAT simulation of the SF-12 showed reduction in the amount of administered item while preserving measurement reliability (Figure 2). CONCLUSION As previously reported, a correlated two factor structure and three-factor structure for the SF-12 and disease-specific KDQOL, respectively, showed acceptable fit to the observed response pattern. However, a bifactor model structure improved model fit. CAT simulation based on delta theta rules for the SF-12 questionnaire demonstrated promising results as an item selection strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘应助可可采纳,获得10
23秒前
30秒前
可可完成签到,获得积分10
46秒前
草莓熊1215完成签到 ,获得积分10
1分钟前
turtle完成签到 ,获得积分10
1分钟前
share发布了新的文献求助10
1分钟前
一盏壶完成签到,获得积分10
2分钟前
老迟到的友桃完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助50
3分钟前
404NotFOUND完成签到,获得积分0
3分钟前
4分钟前
胡国伦完成签到 ,获得积分10
4分钟前
科研通AI5应助Hamakanma采纳,获得10
4分钟前
laohei94_6完成签到 ,获得积分10
4分钟前
周浩宇完成签到,获得积分10
4分钟前
ramsey33完成签到 ,获得积分10
4分钟前
kaiii发布了新的文献求助30
5分钟前
孟寐以求完成签到 ,获得积分10
5分钟前
万能图书馆应助kaiii采纳,获得10
5分钟前
5分钟前
5分钟前
公西海冬完成签到,获得积分10
5分钟前
orixero应助积极的南莲采纳,获得10
5分钟前
zqy完成签到 ,获得积分10
5分钟前
AURORA丶完成签到 ,获得积分10
5分钟前
波里舞完成签到 ,获得积分10
5分钟前
科研通AI2S应助Hamakanma采纳,获得10
5分钟前
小布完成签到 ,获得积分0
6分钟前
ZaZa完成签到,获得积分10
6分钟前
隐形曼青应助奋斗的桐采纳,获得10
6分钟前
6分钟前
6分钟前
十三发布了新的文献求助30
6分钟前
奋斗的桐发布了新的文献求助10
6分钟前
小二郎应助oleskarabach采纳,获得10
6分钟前
ice完成签到 ,获得积分10
6分钟前
热心的思烟完成签到,获得积分10
7分钟前
7分钟前
Milo发布了新的文献求助30
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4880681
求助须知:如何正确求助?哪些是违规求助? 4167117
关于积分的说明 12927647
捐赠科研通 3926143
什么是DOI,文献DOI怎么找? 2155055
邀请新用户注册赠送积分活动 1173204
关于科研通互助平台的介绍 1077756