Supramolecular Interactions of Flexible 2D Perovskite in Microstrain Releasing and Optoelectronic Properties Recovery

材料科学 钙钛矿(结构) 八面体 超分子化学 卤化物 弯曲 碘化物 结晶学 纳米技术 复合材料 晶体结构 无机化学 化学
作者
Jinmei Song,Xiaopeng Feng,Haotong Wei,Bai Yang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (30) 被引量:15
标识
DOI:10.1002/adfm.202203329
摘要

Abstract The conductivity of 2D perovskite is mainly dominated by halide metal octahedron skeletons. However, in contrast to 3D perovskite structures, the layered inorganic skeletons are easily compressed or stretched by large organic cations, causing serious microstrain with impaired optoelectronic responses. Here, fluorination modulated supramolecular interactions in 2D fluorophenethylammonium lead iodide (FPEA 2 PbI 4 ) perovskites are reported. In the double layered organic spacer, interlayer supramolecular interactions between electronegative F atoms and electron‐rich benzene rings dominate the lattice microstrain of 2D (p‐FPEA) 2 PbI 4 perovskite, which can be released by interlayer interactions pulling during compressively bending the flexible devices. This strong electrostatic interaction can maximally release the compression to the inorganic octahedron skeleton during compressive bending, leading to a maximum degree of released microstrain with improved stability. The 60% microstrain can be released by compressive bending, and the corresponding photocurrent response is recovered by about three times in (p‐FPEA) 2 PbI 4 perovskite film. In contrast, intralayer supramolecular interactions dominate microstrain of 2D (o‐FPEA) 2 PbI 4 perovskites, which prevents the microstrain release during compressive bending. The strong electrostatic interaction design in the organic spacer of 2D perovskite takes an important role in releasing the microstrain and re‐bursting the device performance of flexible perovskite devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
4秒前
4秒前
5秒前
科研通AI5应助无悔呀采纳,获得10
5秒前
5秒前
littlewhite关注了科研通微信公众号
6秒前
6秒前
零点起步完成签到,获得积分10
6秒前
慕青应助大力的含卉采纳,获得10
6秒前
善良过客发布了新的文献求助10
7秒前
7秒前
7秒前
dildil发布了新的文献求助10
7秒前
7秒前
hu970发布了新的文献求助10
8秒前
8秒前
王思鲁发布了新的文献求助30
8秒前
七个小矮人完成签到,获得积分10
9秒前
Aria完成签到,获得积分10
9秒前
感性的安露应助结实雪卉采纳,获得20
10秒前
零点起步发布了新的文献求助10
11秒前
故意的傲玉应助Ll采纳,获得10
11秒前
斯文败类应助xiuxiu_27采纳,获得10
11秒前
胖子完成签到,获得积分10
11秒前
王巧巧完成签到,获得积分10
11秒前
tangsuyun发布了新的文献求助10
12秒前
祝顺遂发布了新的文献求助10
12秒前
Seven发布了新的文献求助10
12秒前
土拨鼠完成签到 ,获得积分10
13秒前
邢夏之发布了新的文献求助10
13秒前
漂亮芹菜完成签到,获得积分10
13秒前
ZXH完成签到,获得积分10
13秒前
Evelyn完成签到 ,获得积分10
13秒前
习习应助sb采纳,获得10
14秒前
14秒前
14秒前
斯文败类应助liu采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759