Performance comparison of wavelet families for noise reduction and intensity thresholding in Fourier Ptychographic microscopy

光学 阈值 小波 傅里叶变换 降噪 显微镜 强度(物理) 噪音(视频) 傅里叶分析 还原(数学) 材料科学 物理 计算机科学 人工智能 数学 图像(数学) 量子力学 几何学
作者
Nazabat Hussain,Mojde Hasanzade,Dag W. Breiby,Muhammad Akram
出处
期刊:Optics Communications [Elsevier]
卷期号:519: 128400-128400 被引量:2
标识
DOI:10.1016/j.optcom.2022.128400
摘要

Microscopy is going through a digital renaissance and new schemes are developed where computer and algorithms constitute an integral part of the imaging process itself. Computational microscopy increases performance by offering better resolution, larger field of view, quantitative contrast and also reduced size, weight and economic cost. Fourier Ptychographic microscopy utilizes multiple images of a sample taken at lower resolution, each illuminated with a unique incidence angle coherent source, and synthesizes one high resolution complex valued image by iterative phase retrieval algorithms. The recorded images are often corrupted with background noise and pre-processing is needed to improve the quality of the FP recovered image. The pre-processing involves data denoising, thresholding and intensity balancing. We have investigated different wavelet families to test their performance in terms of having compact support and giving the desired level of decomposition for optimal intensity thresholding and denoising in Fourier Ptychography (FP). The wavelet families Daubechies, Biorthogonal, Reverse Biorthogonal, Coiflet, Fejer-Korovkin, Discrete Meyer and Symlet with different compact support have been studied. The obtained threshold was used with noisy synthetic and experimental images for a variety of objects to evaluate the performance of the described framework. In particular, Reverse Biorthogonal wavelets were found to preserve useful signal in corrupted images to a great extent (RMS error 0.39) with low computational cost. Consequently, quantitatively more correct amplitude and phase images with uniform and homogeneous background could be recovered. • In FPM, Experimental images contain background noise and pre-processing is always needed. • Pre-processing involves data denoising, thresholding and intensity balancing. • Different wavelet families have been investigated to evaluate performance for denoising in FPM • Daubechies, Biorthogonal, Reverse Biorthogonal, Coiflet, FejerKorovkin, Discrete Meyer and Symlet wavelets have been studied. • Reverse Biorthogonal wavelets were found to preserve useful signal in corrupted images to a great extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娜行发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
Ck完成签到,获得积分10
1秒前
烦烦完成签到 ,获得积分10
2秒前
百宝发布了新的文献求助10
3秒前
jiangnan发布了新的文献求助10
3秒前
Sev完成签到,获得积分10
3秒前
3秒前
可耐的乘风完成签到,获得积分10
3秒前
FIN应助obito采纳,获得30
4秒前
啾啾发布了新的文献求助10
4秒前
爱学习的向日葵完成签到,获得积分10
5秒前
5秒前
华仔应助泛泛之交采纳,获得10
6秒前
雪123发布了新的文献求助10
6秒前
6秒前
7秒前
charon发布了新的文献求助10
7秒前
凶狠的食铁兽完成签到,获得积分10
7秒前
星辰大海应助花花啊采纳,获得10
7秒前
华仔应助liuyingke采纳,获得10
7秒前
HEIKU应助还不如瞎写采纳,获得10
8秒前
liuliumei发布了新的文献求助30
9秒前
zhouzhou完成签到,获得积分10
9秒前
sure发布了新的文献求助10
9秒前
上官若男应助Hu111采纳,获得10
10秒前
务实的紫伊完成签到,获得积分10
10秒前
春风得意完成签到,获得积分10
10秒前
爱你呃不可能完成签到,获得积分10
10秒前
WSY完成签到,获得积分20
10秒前
666星爷留下了新的社区评论
11秒前
风吹似夏完成签到,获得积分10
11秒前
11秒前
李健应助crr采纳,获得10
11秒前
tao完成签到,获得积分20
12秒前
淡淡的雪完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672