Unravelling the effect of defect density, grain boundary and gradient doping in an efficient lead-free formamidinium perovskite solar cell

甲脒 钙钛矿(结构) 钙钛矿太阳能电池 材料科学 太阳能电池 光电子学 兴奋剂 氧化锡 氧化铟锡 能量转换效率 粒度 图层(电子) 纳米技术 化学 复合材料 结晶学
作者
Faisal Saeed,Hasan Erteza Gelani
出处
期刊:Optical Materials [Elsevier]
卷期号:124: 111952-111952 被引量:19
标识
DOI:10.1016/j.optmat.2021.111952
摘要

Here we detailed a computational investigation of novel structured formamidinium tin tri-iodide (HC(NH2)SnI3or FASnI3where FA=formamidinium) perovskite solar cell. The proposed perovskite solar cell is of the architecture of glass substrate: fluorine-doped tin oxide (FTO)-oxide layer (OL)/Titanium di-oxide – electron transport layer (ETL)/ (HC(NH2SnI3−FASnI3) –perovskite absorber/spiro-omeTad-hole transport layer (HTL)/gold (Au) contacts. A power conversion efficiency of 21.24% was achieved using uniform doping and 21.5% with gradient doping. The incorporation of 0.01 μm grain boundary layer considerably effected the device performance and efficiency was dropped to 19.8%. The absorber layer parameters including layer thickness and defect density (or trap density) were also varied to inspect their impact on device performance. Further the paper also provide insights on the Mott-Schottky behavior, frequency dependent capacitance spectrum, optical absorption spectra, temperature variation impacts and the influence of resistance variation on device performance. The results of the quantum efficiency as a function of incident light wavelength depict that the proposed perovskite solar cell has a great potential to absorb a wider range of wavelengths (300 nm–900 nm) across the solar spectrum. The in-detail investigation of device characteristics revealed that the simulation model can become a useful guide in future fabrication of the efficient nano-structured formamidinium tin iodide based perovskite solar cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烂漫耳机完成签到,获得积分10
1秒前
木槿完成签到,获得积分10
1秒前
科研通AI6应助王志新采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得30
2秒前
柏林寒冬应助科研通管家采纳,获得10
2秒前
2秒前
活力忆雪应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Linos应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
Akim应助单纯的爆米花采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得50
2秒前
香蕉觅云应助科研通管家采纳,获得30
2秒前
Linos应助科研通管家采纳,获得10
2秒前
受伤毛豆应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
李爱国应助阿猫采纳,获得10
2秒前
2秒前
Hilda007应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
科研通AI6应助剧院的饭桶采纳,获得10
3秒前
无极微光应助现代的青寒采纳,获得20
3秒前
米奇完成签到 ,获得积分10
3秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836