Towards to intelligent routing for DTN protocols using machine learning techniques

计算机科学 路由协议 布线(电子设计自动化) 内部网关协议 计算机网络 距离向量路由协议 链路状态路由协议 人工智能
作者
El Arbi Abdellaoui Alaoui,Stéphane Cédric Koumetio Tékouabou,Yassine Maleh,Anand Nayyar
出处
期刊:Simulation Modelling Practice and Theory [Elsevier BV]
卷期号:117: 102475-102475 被引量:7
标识
DOI:10.1016/j.simpat.2021.102475
摘要

The communication protocols of wireless networks have experienced great advances in recent years, specifically with the evolution of new technologies such as the Internet of Things (IoT). However, certain problems remain unsolved, in particular for wireless networks, and more specifically for DTN networks, which represent a major challenge in terms of DTN routing. This paper aims to design an intelligent routing system based on machine learning techniques, the use of which represents another possibility to classify bundles that have arrived at the destination successfully or not. These networks occasionally carry out an evaluation which makes it possible to choose the type of routing corresponding to a given situation. It then minimizes the unnecessary information of the entries and performs the classification of the data. Despite the problems cited, our challenge is to design an intelligent routing mechanism that is able to classify bundles that have arrived and those that have not arrived at their destination. The smart routing system uses machine learning as a main tool to design our system. Indeed, various Machine Learning techniques, such as Bagging and Boosting, have been used to classify whether bundles have arrived at their destination successfully or not. Machine Learning now enables us to learn directly from data rather than human expertise, resulting in higher accuracy. We utilized the SMOTE technique to balance the two groups of data, which allows us to collect the equal amount of samples for each class. We also included techniques for interpreting complicated Machine Learning Models to understand the reasoning for model decisions, such as SHAP values. Results show an overall accuracy of 80% for the Random Forest (RF) and ExtraTrees Classifier (ET).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JOKY完成签到 ,获得积分10
1秒前
上官若男应助Zjx采纳,获得10
2秒前
不良帅完成签到,获得积分10
3秒前
KUZMA完成签到,获得积分10
4秒前
7秒前
清溪鱼唱完成签到,获得积分10
7秒前
图雄争霸完成签到 ,获得积分10
7秒前
邪恶花生米完成签到 ,获得积分10
7秒前
星期三不调闹钟完成签到 ,获得积分10
8秒前
我是老大应助神海采纳,获得10
9秒前
10秒前
李爱国应助清溪鱼唱采纳,获得10
13秒前
15秒前
15秒前
受伤翠容发布了新的文献求助10
18秒前
太阳花发布了新的文献求助10
19秒前
20秒前
刻苦的黑米完成签到,获得积分10
24秒前
英俊的铭应助受伤翠容采纳,获得10
26秒前
卡皮巴拉完成签到,获得积分10
27秒前
希望天下0贩的0应助Yxy2021采纳,获得10
27秒前
丘比特应助范白白采纳,获得10
28秒前
30秒前
松林发布了新的文献求助10
30秒前
感动清炎完成签到,获得积分10
32秒前
miku完成签到 ,获得积分10
33秒前
zhuhaot发布了新的文献求助50
33秒前
活泼万言发布了新的文献求助10
38秒前
ding应助QYPANG采纳,获得10
39秒前
yx_cheng应助松林采纳,获得20
40秒前
42秒前
43秒前
打打应助星沉静默采纳,获得10
44秒前
46秒前
李爱国应助淡定海亦采纳,获得10
47秒前
48秒前
49秒前
52秒前
Zjx发布了新的文献求助10
52秒前
成功完成签到,获得积分10
53秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993104
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264385
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652