Towards to intelligent routing for DTN protocols using machine learning techniques

计算机科学 路由协议 布线(电子设计自动化) 内部网关协议 计算机网络 距离向量路由协议 链路状态路由协议 人工智能
作者
El Arbi Abdellaoui Alaoui,Stéphane Cédric Koumetio Tékouabou,Yassine Maleh,Anand Nayyar
出处
期刊:Simulation Modelling Practice and Theory [Elsevier]
卷期号:117: 102475-102475 被引量:7
标识
DOI:10.1016/j.simpat.2021.102475
摘要

The communication protocols of wireless networks have experienced great advances in recent years, specifically with the evolution of new technologies such as the Internet of Things (IoT). However, certain problems remain unsolved, in particular for wireless networks, and more specifically for DTN networks, which represent a major challenge in terms of DTN routing. This paper aims to design an intelligent routing system based on machine learning techniques, the use of which represents another possibility to classify bundles that have arrived at the destination successfully or not. These networks occasionally carry out an evaluation which makes it possible to choose the type of routing corresponding to a given situation. It then minimizes the unnecessary information of the entries and performs the classification of the data. Despite the problems cited, our challenge is to design an intelligent routing mechanism that is able to classify bundles that have arrived and those that have not arrived at their destination. The smart routing system uses machine learning as a main tool to design our system. Indeed, various Machine Learning techniques, such as Bagging and Boosting, have been used to classify whether bundles have arrived at their destination successfully or not. Machine Learning now enables us to learn directly from data rather than human expertise, resulting in higher accuracy. We utilized the SMOTE technique to balance the two groups of data, which allows us to collect the equal amount of samples for each class. We also included techniques for interpreting complicated Machine Learning Models to understand the reasoning for model decisions, such as SHAP values. Results show an overall accuracy of 80% for the Random Forest (RF) and ExtraTrees Classifier (ET).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
YJ888发布了新的文献求助10
1秒前
1秒前
英吉利25发布了新的文献求助10
1秒前
1秒前
赘婿应助Zlamb采纳,获得10
2秒前
2秒前
我爱学习发布了新的文献求助10
2秒前
sleepingfish应助语冰采纳,获得20
3秒前
001完成签到,获得积分10
4秒前
岳仔完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
彭于晏发布了新的文献求助10
6秒前
6秒前
呼了个呼发布了新的文献求助10
6秒前
羽柒er完成签到,获得积分10
6秒前
111发布了新的文献求助10
7秒前
7秒前
8秒前
tt发布了新的文献求助10
8秒前
123456完成签到,获得积分10
9秒前
9秒前
wanci应助我爱学习采纳,获得10
9秒前
快乐尔容发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
12秒前
alile发布了新的文献求助10
12秒前
乐乐应助逗逗采纳,获得10
12秒前
无限的映之给无限的映之的求助进行了留言
12秒前
13秒前
13秒前
小马甲应助轩辕冰夏采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321239
求助须知:如何正确求助?哪些是违规求助? 4463064
关于积分的说明 13888665
捐赠科研通 4354148
什么是DOI,文献DOI怎么找? 2391585
邀请新用户注册赠送积分活动 1385183
关于科研通互助平台的介绍 1354924