Towards to intelligent routing for DTN protocols using machine learning techniques

计算机科学 路由协议 布线(电子设计自动化) 内部网关协议 计算机网络 距离向量路由协议 链路状态路由协议 人工智能
作者
El Arbi Abdellaoui Alaoui,Stéphane Cédric Koumetio Tékouabou,Yassine Maleh,Anand Nayyar
出处
期刊:Simulation Modelling Practice and Theory [Elsevier]
卷期号:117: 102475-102475 被引量:7
标识
DOI:10.1016/j.simpat.2021.102475
摘要

The communication protocols of wireless networks have experienced great advances in recent years, specifically with the evolution of new technologies such as the Internet of Things (IoT). However, certain problems remain unsolved, in particular for wireless networks, and more specifically for DTN networks, which represent a major challenge in terms of DTN routing. This paper aims to design an intelligent routing system based on machine learning techniques, the use of which represents another possibility to classify bundles that have arrived at the destination successfully or not. These networks occasionally carry out an evaluation which makes it possible to choose the type of routing corresponding to a given situation. It then minimizes the unnecessary information of the entries and performs the classification of the data. Despite the problems cited, our challenge is to design an intelligent routing mechanism that is able to classify bundles that have arrived and those that have not arrived at their destination. The smart routing system uses machine learning as a main tool to design our system. Indeed, various Machine Learning techniques, such as Bagging and Boosting, have been used to classify whether bundles have arrived at their destination successfully or not. Machine Learning now enables us to learn directly from data rather than human expertise, resulting in higher accuracy. We utilized the SMOTE technique to balance the two groups of data, which allows us to collect the equal amount of samples for each class. We also included techniques for interpreting complicated Machine Learning Models to understand the reasoning for model decisions, such as SHAP values. Results show an overall accuracy of 80% for the Random Forest (RF) and ExtraTrees Classifier (ET).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT2022发布了新的文献求助10
1秒前
安静的幻波完成签到,获得积分10
2秒前
3秒前
攀攀完成签到 ,获得积分10
6秒前
楠楠发布了新的文献求助10
7秒前
xh完成签到 ,获得积分10
8秒前
wanci应助优雅夏彤采纳,获得20
10秒前
共享精神应助小张要努力采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
遇上就这样吧应助小栗子采纳,获得60
12秒前
朴素的闭月完成签到,获得积分10
13秒前
13秒前
开放鸿涛应助清秀茹嫣采纳,获得10
16秒前
16秒前
18秒前
Sun发布了新的文献求助10
18秒前
月悦完成签到 ,获得积分10
20秒前
NingZH完成签到,获得积分10
20秒前
宝剑葫芦发布了新的文献求助10
22秒前
23秒前
明亮小凡完成签到 ,获得积分10
23秒前
呆萌雪晴发布了新的文献求助10
23秒前
jy完成签到,获得积分10
23秒前
ZSmile发布了新的文献求助30
23秒前
甜甜匪发布了新的文献求助10
25秒前
上官若男应助黄桃采纳,获得30
26秒前
shmily完成签到 ,获得积分10
26秒前
26秒前
追梦机完成签到,获得积分10
27秒前
善学以致用应助九章采纳,获得10
29秒前
跳跃的雪珊完成签到 ,获得积分10
29秒前
充电宝应助迅速的小天鹅采纳,获得10
29秒前
fdawn发布了新的文献求助10
30秒前
知行合一发布了新的文献求助10
31秒前
zyyin完成签到,获得积分10
31秒前
ii关闭了ii文献求助
32秒前
kemeng发布了新的文献求助10
33秒前
龙海完成签到 ,获得积分10
37秒前
tracuer完成签到,获得积分10
37秒前
LZT完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606280
求助须知:如何正确求助?哪些是违规求助? 4690702
关于积分的说明 14865203
捐赠科研通 4704558
什么是DOI,文献DOI怎么找? 2542558
邀请新用户注册赠送积分活动 1508054
关于科研通互助平台的介绍 1472241