亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards to intelligent routing for DTN protocols using machine learning techniques

计算机科学 路由协议 布线(电子设计自动化) 内部网关协议 计算机网络 距离向量路由协议 链路状态路由协议 人工智能
作者
El Arbi Abdellaoui Alaoui,Stéphane Cédric Koumetio Tékouabou,Yassine Maleh,Anand Nayyar
出处
期刊:Simulation Modelling Practice and Theory [Elsevier]
卷期号:117: 102475-102475 被引量:7
标识
DOI:10.1016/j.simpat.2021.102475
摘要

The communication protocols of wireless networks have experienced great advances in recent years, specifically with the evolution of new technologies such as the Internet of Things (IoT). However, certain problems remain unsolved, in particular for wireless networks, and more specifically for DTN networks, which represent a major challenge in terms of DTN routing. This paper aims to design an intelligent routing system based on machine learning techniques, the use of which represents another possibility to classify bundles that have arrived at the destination successfully or not. These networks occasionally carry out an evaluation which makes it possible to choose the type of routing corresponding to a given situation. It then minimizes the unnecessary information of the entries and performs the classification of the data. Despite the problems cited, our challenge is to design an intelligent routing mechanism that is able to classify bundles that have arrived and those that have not arrived at their destination. The smart routing system uses machine learning as a main tool to design our system. Indeed, various Machine Learning techniques, such as Bagging and Boosting, have been used to classify whether bundles have arrived at their destination successfully or not. Machine Learning now enables us to learn directly from data rather than human expertise, resulting in higher accuracy. We utilized the SMOTE technique to balance the two groups of data, which allows us to collect the equal amount of samples for each class. We also included techniques for interpreting complicated Machine Learning Models to understand the reasoning for model decisions, such as SHAP values. Results show an overall accuracy of 80% for the Random Forest (RF) and ExtraTrees Classifier (ET).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大眼怪发布了新的文献求助10
5秒前
6秒前
??完成签到 ,获得积分20
7秒前
Zz完成签到 ,获得积分10
9秒前
11秒前
12秒前
傻芙芙的完成签到,获得积分10
13秒前
小蝶完成签到 ,获得积分10
15秒前
吕文晴发布了新的文献求助10
15秒前
18秒前
19秒前
粽子完成签到,获得积分10
22秒前
大个应助Ash采纳,获得10
23秒前
23秒前
海派Hi发布了新的文献求助10
24秒前
大眼怪完成签到,获得积分10
25秒前
慕青应助吕文晴采纳,获得10
29秒前
30秒前
忐忑的方盒完成签到 ,获得积分10
32秒前
电量满格中完成签到 ,获得积分10
34秒前
36秒前
37秒前
simple1完成签到 ,获得积分10
38秒前
深情安青应助99tyz采纳,获得10
40秒前
HmH发布了新的文献求助10
41秒前
六六安安完成签到,获得积分10
42秒前
田様应助WDK采纳,获得10
42秒前
Lexi28完成签到 ,获得积分10
42秒前
科研顺利发布了新的文献求助30
44秒前
45秒前
不安的嘉懿完成签到,获得积分10
46秒前
48秒前
善学以致用应助WXN采纳,获得10
49秒前
50秒前
张张完成签到,获得积分10
51秒前
张张发布了新的文献求助10
54秒前
沉静的安青完成签到 ,获得积分10
55秒前
55秒前
56秒前
WDK完成签到,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426257
求助须知:如何正确求助?哪些是违规求助? 4540096
关于积分的说明 14171580
捐赠科研通 4457859
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164