亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards to intelligent routing for DTN protocols using machine learning techniques

计算机科学 路由协议 布线(电子设计自动化) 内部网关协议 计算机网络 距离向量路由协议 链路状态路由协议 人工智能
作者
El Arbi Abdellaoui Alaoui,Stéphane Cédric Koumetio Tékouabou,Yassine Maleh,Anand Nayyar
出处
期刊:Simulation Modelling Practice and Theory [Elsevier]
卷期号:117: 102475-102475 被引量:7
标识
DOI:10.1016/j.simpat.2021.102475
摘要

The communication protocols of wireless networks have experienced great advances in recent years, specifically with the evolution of new technologies such as the Internet of Things (IoT). However, certain problems remain unsolved, in particular for wireless networks, and more specifically for DTN networks, which represent a major challenge in terms of DTN routing. This paper aims to design an intelligent routing system based on machine learning techniques, the use of which represents another possibility to classify bundles that have arrived at the destination successfully or not. These networks occasionally carry out an evaluation which makes it possible to choose the type of routing corresponding to a given situation. It then minimizes the unnecessary information of the entries and performs the classification of the data. Despite the problems cited, our challenge is to design an intelligent routing mechanism that is able to classify bundles that have arrived and those that have not arrived at their destination. The smart routing system uses machine learning as a main tool to design our system. Indeed, various Machine Learning techniques, such as Bagging and Boosting, have been used to classify whether bundles have arrived at their destination successfully or not. Machine Learning now enables us to learn directly from data rather than human expertise, resulting in higher accuracy. We utilized the SMOTE technique to balance the two groups of data, which allows us to collect the equal amount of samples for each class. We also included techniques for interpreting complicated Machine Learning Models to understand the reasoning for model decisions, such as SHAP values. Results show an overall accuracy of 80% for the Random Forest (RF) and ExtraTrees Classifier (ET).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蘑菇发布了新的文献求助10
5秒前
8秒前
科研通AI6.1应助牛油果采纳,获得10
8秒前
深情的楷瑞完成签到 ,获得积分10
9秒前
凌时爱吃零食完成签到,获得积分10
11秒前
橙汁完成签到,获得积分10
12秒前
Yu发布了新的文献求助10
15秒前
橙汁发布了新的文献求助10
18秒前
LiW完成签到,获得积分10
20秒前
希望天下0贩的0应助Yu采纳,获得10
20秒前
21秒前
22秒前
23秒前
强劲完成签到 ,获得积分20
25秒前
25秒前
小绵羊发布了新的文献求助10
26秒前
LiW发布了新的文献求助10
28秒前
xiangling1116发布了新的文献求助10
28秒前
31秒前
泡泡完成签到 ,获得积分10
32秒前
兆兆完成签到 ,获得积分10
36秒前
hahaha完成签到,获得积分10
37秒前
xiangling1116完成签到,获得积分10
37秒前
牛油果发布了新的文献求助10
39秒前
45秒前
科研通AI6.1应助gyy采纳,获得10
49秒前
keyanxinshou完成签到 ,获得积分10
51秒前
热心翠霜发布了新的文献求助10
51秒前
51秒前
56秒前
59秒前
善学以致用应助ANTianxu采纳,获得10
59秒前
星辰大海应助我怕好时光采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
我怕好时光完成签到,获得积分10
1分钟前
ANTianxu发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763702
求助须知:如何正确求助?哪些是违规求助? 5543398
关于积分的说明 15405256
捐赠科研通 4899315
什么是DOI,文献DOI怎么找? 2635474
邀请新用户注册赠送积分活动 1583579
关于科研通互助平台的介绍 1538685