Towards to intelligent routing for DTN protocols using machine learning techniques

计算机科学 路由协议 布线(电子设计自动化) 内部网关协议 计算机网络 距离向量路由协议 链路状态路由协议 人工智能
作者
El Arbi Abdellaoui Alaoui,Stéphane Cédric Koumetio Tékouabou,Yassine Maleh,Anand Nayyar
出处
期刊:Simulation Modelling Practice and Theory [Elsevier]
卷期号:117: 102475-102475 被引量:7
标识
DOI:10.1016/j.simpat.2021.102475
摘要

The communication protocols of wireless networks have experienced great advances in recent years, specifically with the evolution of new technologies such as the Internet of Things (IoT). However, certain problems remain unsolved, in particular for wireless networks, and more specifically for DTN networks, which represent a major challenge in terms of DTN routing. This paper aims to design an intelligent routing system based on machine learning techniques, the use of which represents another possibility to classify bundles that have arrived at the destination successfully or not. These networks occasionally carry out an evaluation which makes it possible to choose the type of routing corresponding to a given situation. It then minimizes the unnecessary information of the entries and performs the classification of the data. Despite the problems cited, our challenge is to design an intelligent routing mechanism that is able to classify bundles that have arrived and those that have not arrived at their destination. The smart routing system uses machine learning as a main tool to design our system. Indeed, various Machine Learning techniques, such as Bagging and Boosting, have been used to classify whether bundles have arrived at their destination successfully or not. Machine Learning now enables us to learn directly from data rather than human expertise, resulting in higher accuracy. We utilized the SMOTE technique to balance the two groups of data, which allows us to collect the equal amount of samples for each class. We also included techniques for interpreting complicated Machine Learning Models to understand the reasoning for model decisions, such as SHAP values. Results show an overall accuracy of 80% for the Random Forest (RF) and ExtraTrees Classifier (ET).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助小泷包采纳,获得10
2秒前
alex发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
小柴发布了新的文献求助10
3秒前
yc完成签到,获得积分10
4秒前
4秒前
reai完成签到,获得积分10
6秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
药石无医发布了新的文献求助10
8秒前
9秒前
CodeCraft应助暴躁的振家采纳,获得10
9秒前
9秒前
axiao完成签到,获得积分10
10秒前
搜集达人应助alex采纳,获得10
11秒前
11秒前
大模型应助Yxs采纳,获得10
13秒前
szhllf发布了新的文献求助10
14秒前
N2H4发布了新的文献求助10
14秒前
小泷包完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
慕青应助行7采纳,获得10
16秒前
16秒前
明亮冬萱完成签到,获得积分10
16秒前
李泽鸿发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
Lucky完成签到 ,获得积分10
18秒前
18秒前
丽丽发布了新的文献求助10
19秒前
小马甲应助Guozixin采纳,获得10
20秒前
小泷包发布了新的文献求助10
20秒前
21秒前
李哈哈发布了新的文献求助10
21秒前
yaoyao发布了新的文献求助10
21秒前
斯文败类应助nn采纳,获得10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5753463
求助须知:如何正确求助?哪些是违规求助? 5481244
关于积分的说明 15378197
捐赠科研通 4892357
什么是DOI,文献DOI怎么找? 2631179
邀请新用户注册赠送积分活动 1579248
关于科研通互助平台的介绍 1535000