Towards to intelligent routing for DTN protocols using machine learning techniques

计算机科学 路由协议 布线(电子设计自动化) 内部网关协议 计算机网络 距离向量路由协议 链路状态路由协议 人工智能
作者
El Arbi Abdellaoui Alaoui,Stéphane Cédric Koumetio Tékouabou,Yassine Maleh,Anand Nayyar
出处
期刊:Simulation Modelling Practice and Theory [Elsevier]
卷期号:117: 102475-102475 被引量:7
标识
DOI:10.1016/j.simpat.2021.102475
摘要

The communication protocols of wireless networks have experienced great advances in recent years, specifically with the evolution of new technologies such as the Internet of Things (IoT). However, certain problems remain unsolved, in particular for wireless networks, and more specifically for DTN networks, which represent a major challenge in terms of DTN routing. This paper aims to design an intelligent routing system based on machine learning techniques, the use of which represents another possibility to classify bundles that have arrived at the destination successfully or not. These networks occasionally carry out an evaluation which makes it possible to choose the type of routing corresponding to a given situation. It then minimizes the unnecessary information of the entries and performs the classification of the data. Despite the problems cited, our challenge is to design an intelligent routing mechanism that is able to classify bundles that have arrived and those that have not arrived at their destination. The smart routing system uses machine learning as a main tool to design our system. Indeed, various Machine Learning techniques, such as Bagging and Boosting, have been used to classify whether bundles have arrived at their destination successfully or not. Machine Learning now enables us to learn directly from data rather than human expertise, resulting in higher accuracy. We utilized the SMOTE technique to balance the two groups of data, which allows us to collect the equal amount of samples for each class. We also included techniques for interpreting complicated Machine Learning Models to understand the reasoning for model decisions, such as SHAP values. Results show an overall accuracy of 80% for the Random Forest (RF) and ExtraTrees Classifier (ET).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助洁净的千凡采纳,获得10
刚刚
1秒前
慕青应助ZXY采纳,获得10
1秒前
2秒前
zzz完成签到,获得积分10
3秒前
3秒前
研友_VZG7GZ应助11111采纳,获得10
3秒前
4秒前
4秒前
小鱼头发布了新的文献求助10
4秒前
HaHa007发布了新的文献求助10
5秒前
善良善愁发布了新的文献求助10
6秒前
宪珂完成签到,获得积分10
6秒前
巴啦啦发布了新的文献求助10
7秒前
平常完成签到,获得积分10
7秒前
科研通AI6应助蓝色采纳,获得10
7秒前
Wu完成签到 ,获得积分10
7秒前
汉堡包应助瘦瘦的百褶裙采纳,获得10
7秒前
缓慢元枫完成签到,获得积分20
8秒前
8秒前
123发布了新的文献求助10
9秒前
成以完成签到,获得积分20
9秒前
等一轮明月完成签到 ,获得积分20
9秒前
科研通AI6应助妖精采纳,获得10
10秒前
10秒前
科研通AI6应助脆饼采纳,获得10
11秒前
estk发布了新的文献求助10
11秒前
ZJX应助狂野雨兰采纳,获得10
11秒前
追逐应助喷火战斗鸡采纳,获得10
12秒前
Lucas应助眯眯眼的小懒猪采纳,获得10
13秒前
Xnnnnnn完成签到,获得积分10
13秒前
怡然的雨筠完成签到 ,获得积分10
13秒前
科目三应助小鱼头采纳,获得10
14秒前
asdfzxcv应助夏12采纳,获得10
14秒前
bkagyin应助chai采纳,获得10
14秒前
标致忆丹完成签到,获得积分10
14秒前
英俊的铭应助123采纳,获得10
14秒前
科研通AI6应助木小叶采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656628
求助须知:如何正确求助?哪些是违规求助? 4804442
关于积分的说明 15076544
捐赠科研通 4814884
什么是DOI,文献DOI怎么找? 2576051
邀请新用户注册赠送积分活动 1531356
关于科研通互助平台的介绍 1489936