Capturing large genomic contexts for accurately predicting enhancer-promoter interactions

增强子 发起人 计算生物学 计算机科学 基因 人工智能 生物 机器学习 遗传学 基因表达
作者
Ken Chen,Huiying Zhao,Yuedong Yang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:9
标识
DOI:10.1093/bib/bbab577
摘要

Enhancer-promoter interaction (EPI) is a key mechanism underlying gene regulation. EPI prediction has always been a challenging task because enhancers could regulate promoters of distant target genes. Although many machine learning models have been developed, they leverage only the features in enhancers and promoters, or simply add the average genomic signals in the regions between enhancers and promoters, without utilizing detailed features between or outside enhancers and promoters. Due to a lack of large-scale features, existing methods could achieve only moderate performance, especially for predicting EPIs in different cell types. Here, we present a Transformer-based model, TransEPI, for EPI prediction by capturing large genomic contexts. TransEPI was developed based on EPI datasets derived from Hi-C or ChIA-PET data in six cell lines. To avoid over-fitting, we evaluated the TransEPI model by testing it on independent test datasets where the cell line and chromosome are different from the training data. TransEPI not only achieved consistent performance across the cross-validation and test datasets from different cell types but also outperformed the state-of-the-art machine learning and deep learning models. In addition, we found that the improved performance of TransEPI was attributed to the integration of large genomic contexts. Lastly, TransEPI was extended to study the non-coding mutations associated with brain disorders or neural diseases, and we found that TransEPI was also useful for predicting the target genes of non-coding mutations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzr元亨利贞完成签到,获得积分10
1秒前
1秒前
上官若男应助李龙波采纳,获得10
1秒前
NexusExplorer应助呆萌冰烟采纳,获得10
2秒前
seven发布了新的文献求助10
2秒前
英姑应助55555采纳,获得10
2秒前
2秒前
CX330ren完成签到,获得积分10
3秒前
7秒前
上官万仇发布了新的文献求助20
8秒前
EvilPeas发布了新的文献求助10
8秒前
柏笨完成签到,获得积分10
9秒前
9秒前
粉粉银耳汤完成签到,获得积分10
10秒前
ZYP完成签到,获得积分10
11秒前
grisco发布了新的文献求助10
11秒前
ZYP发布了新的文献求助10
14秒前
Rochester完成签到,获得积分10
15秒前
18秒前
18秒前
19秒前
chcmuer完成签到,获得积分10
19秒前
21秒前
归tu发布了新的文献求助10
22秒前
23秒前
purple1212发布了新的文献求助10
23秒前
mouxq发布了新的文献求助10
23秒前
24秒前
buno应助Captain采纳,获得10
24秒前
baisefengche完成签到,获得积分20
27秒前
30秒前
sissie发布了新的文献求助10
30秒前
李健应助grisco采纳,获得10
34秒前
Clam完成签到,获得积分10
34秒前
baisefengche发布了新的文献求助10
34秒前
34秒前
35秒前
曦月完成签到 ,获得积分10
36秒前
Clam发布了新的文献求助10
38秒前
39秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261164
求助须知:如何正确求助?哪些是违规求助? 2902018
关于积分的说明 8318709
捐赠科研通 2571825
什么是DOI,文献DOI怎么找? 1397272
科研通“疑难数据库(出版商)”最低求助积分说明 653684
邀请新用户注册赠送积分活动 632216