Multi-atlas Multilayer Brain Networks, a new multimodal approach to neurodegenerative disease

地图集(解剖学) 计算机科学 模式 失智症 神经影像学 模态(人机交互) 人工智能 脑图谱 机器学习 模式识别(心理学) 神经科学 疾病 痴呆 心理学 医学 社会学 病理 解剖 社会科学
作者
Vincent Le Du,Charley Presigny,Arabella Bouzigues,Valérie Godefroy,Bénédicte Batrancourt,Richard Lévy,Fabrizio De Vico Fallani,Raffaella Migliaccio
标识
DOI:10.1109/biosmart54244.2021.9677866
摘要

Multilayer networks (MNs) constitute an elegant and insightful multidimensional or multimodal framework. Bimodal MNs made from brain functional and structural networks extracted from neuroimaging modalities commonly lay the ground for truly emergent multimodal analysis. Thus far, they are computed using the same atlas for both layers. However, different atlases are required for specific imaging modalities. Depending on which atlas is chosen for a specific modality, this can lead to information from the other modalities being compromised. In this paper, we propose a new way to build such networks using specific atlases suited to each modality. The new technique is based on the computation of spatial overlaps between regions from different parcellations used for each available modality. We generalized the multiplex core-periphery method used to distinguish core and peripheral brain regions to apply it to such MNs, and to evaluate the approach and compare it to previous versions. We applied this new method in behavioral variant frontotemporal dementia (bvFTD) patients and healthy controls. First, we chose two specific atlases, the AAL2 and Schaefer100-Yeo17, for our DWI and fMRI data respectively. Subsequently, we computed richness and coreness for each subject. Finally, we benchmarked our results to evaluate the technique. We obtained higher peaks of significance and Fishers Criterion than with the previous method in the conditions that replicates previous findings. This highlights the potential of our multi-atlas MNs as well as their usefulness in MN analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发财发布了新的文献求助10
3秒前
yaaabo发布了新的文献求助10
4秒前
4秒前
困困困发布了新的文献求助10
5秒前
5秒前
TANG完成签到,获得积分10
6秒前
bkagyin应助yyy采纳,获得10
6秒前
沉默沛白完成签到,获得积分10
6秒前
7秒前
在水一方应助节节高采纳,获得10
7秒前
刘娟完成签到,获得积分10
7秒前
8秒前
乔达摩悉达多完成签到 ,获得积分10
8秒前
wait发布了新的文献求助10
8秒前
8秒前
沉默沛白发布了新的文献求助10
9秒前
踏实平蓝完成签到,获得积分10
9秒前
ding应助maoli采纳,获得10
9秒前
9秒前
小富婆完成签到 ,获得积分10
12秒前
12秒前
HU发布了新的文献求助10
13秒前
13秒前
xueshu小裁缝完成签到,获得积分20
13秒前
SciGPT应助李堃采纳,获得10
15秒前
易达发布了新的文献求助10
15秒前
16秒前
万能图书馆应助个木采纳,获得10
16秒前
16秒前
17秒前
zhaxiao完成签到,获得积分10
17秒前
wait完成签到,获得积分20
18秒前
18秒前
大雷完成签到,获得积分20
19秒前
19秒前
zhaxiao发布了新的文献求助10
20秒前
22秒前
22秒前
23秒前
消极sol完成签到,获得积分10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146066
求助须知:如何正确求助?哪些是违规求助? 2797486
关于积分的说明 7824486
捐赠科研通 2453874
什么是DOI,文献DOI怎么找? 1305891
科研通“疑难数据库(出版商)”最低求助积分说明 627598
版权声明 601491