Multi-atlas Multilayer Brain Networks, a new multimodal approach to neurodegenerative disease

地图集(解剖学) 计算机科学 模式 失智症 神经影像学 模态(人机交互) 人工智能 脑图谱 机器学习 模式识别(心理学) 神经科学 疾病 痴呆 心理学 医学 社会学 病理 解剖 社会科学
作者
Vincent Le Du,Charley Presigny,Arabella Bouzigues,Valérie Godefroy,Bénédicte Batrancourt,Richard Lévy,Fabrizio De Vico Fallani,Raffaella Migliaccio
标识
DOI:10.1109/biosmart54244.2021.9677866
摘要

Multilayer networks (MNs) constitute an elegant and insightful multidimensional or multimodal framework. Bimodal MNs made from brain functional and structural networks extracted from neuroimaging modalities commonly lay the ground for truly emergent multimodal analysis. Thus far, they are computed using the same atlas for both layers. However, different atlases are required for specific imaging modalities. Depending on which atlas is chosen for a specific modality, this can lead to information from the other modalities being compromised. In this paper, we propose a new way to build such networks using specific atlases suited to each modality. The new technique is based on the computation of spatial overlaps between regions from different parcellations used for each available modality. We generalized the multiplex core-periphery method used to distinguish core and peripheral brain regions to apply it to such MNs, and to evaluate the approach and compare it to previous versions. We applied this new method in behavioral variant frontotemporal dementia (bvFTD) patients and healthy controls. First, we chose two specific atlases, the AAL2 and Schaefer100-Yeo17, for our DWI and fMRI data respectively. Subsequently, we computed richness and coreness for each subject. Finally, we benchmarked our results to evaluate the technique. We obtained higher peaks of significance and Fishers Criterion than with the previous method in the conditions that replicates previous findings. This highlights the potential of our multi-atlas MNs as well as their usefulness in MN analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hehe发布了新的文献求助10
1秒前
不懂QM的薛定谔猫完成签到,获得积分10
2秒前
4秒前
4秒前
梁凯华发布了新的文献求助10
5秒前
7秒前
别找了睡觉吧完成签到 ,获得积分10
7秒前
猪猪hero发布了新的文献求助10
9秒前
猪血糕yu完成签到,获得积分10
9秒前
10秒前
CodeCraft应助xzh采纳,获得10
10秒前
11秒前
wanci应助不懂QM的薛定谔猫采纳,获得10
11秒前
Judy完成签到 ,获得积分0
12秒前
12秒前
12秒前
13秒前
小马甲应助陈晨采纳,获得10
13秒前
细腻曼冬发布了新的文献求助10
14秒前
weiwei发布了新的文献求助10
14秒前
14秒前
虚心的岩完成签到,获得积分10
15秒前
17秒前
Lucas应助zzcres采纳,获得10
17秒前
18秒前
虚心的岩发布了新的文献求助10
18秒前
fugdu发布了新的文献求助10
21秒前
zm发布了新的文献求助10
21秒前
传奇3应助冷酷的丁丁采纳,获得10
21秒前
EVER完成签到 ,获得积分10
23秒前
包破茧完成签到,获得积分10
23秒前
pcr163应助huiyou2采纳,获得50
25秒前
duzhi完成签到 ,获得积分10
26秒前
fugdu完成签到,获得积分10
27秒前
小马甲应助李李李采纳,获得10
27秒前
俭朴涫发布了新的文献求助10
27秒前
hehe发布了新的文献求助10
27秒前
星辰大海应助虚心的岩采纳,获得20
29秒前
核桃应助科研通管家采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511