Machine learning-assisted low-frequency and broadband sound absorber with coherently coupled weak resonances

宽带 非周期图 带宽(计算) 计算机科学 声学 物理 联轴节(管道) 电子工程 数学 工程类 电信 机械工程 组合数学
作者
An Chen,Zi-Xiang Xu,Bin Zheng,Jing Yang,Bin Liang,Jianchun Cheng
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:120 (3) 被引量:14
标识
DOI:10.1063/5.0071036
摘要

An artificial broadband sound absorber composed of multiple components is of significant interest in the physics and engineering communities. The existence of coherently coupled weak resonances (CCWRs) makes it difficult to achieve optimal broadband sound absorption, especially in the presence of complex and aperiodic components. Here, we present and experimentally implement a machine learning-assisted subwavelength sound absorber with CCWRs using an improved Gauss–Bayesian model, which exhibits flexible, high-efficient, and broadband properties at low frequencies (<500 Hz). The proposed aperiodic structure comprises three parallel split-ring units, which enable a quasi-symmetric resonant mode to be generated and effectively dissipate energy because of the huge phase difference between each component at the coupled resonant frequency. With high algorithmic efficiency (no more than 80 iterations), the improved Gauss–Bayesian model inversely determines the optimal CCWRs, realizing a reconfigurable high sound absorption spectrum (α > 0.9) from 229 to 457 Hz. The optimal configuration of sound spectrum characteristics and the unit cell structure can be confirmed flexibly. Good agreement between numerical and experimental results verifies the effectiveness of the proposed method. To further exhibit broadband and multiparameter optimization, a nine-unit sound absorber (27 parameters) is numerically simulated and shown to achieve high acoustic absorption and a relatively broad bandwidth (44.8%). Our work lifts the restrictions on analytic models of complex and aperiodic components with coherent coupling effects, paving the way for combining machine learning with the optimal design of metamaterials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
咕噜快逃完成签到,获得积分10
1秒前
1秒前
顾矜应助哈哈哈哈哈采纳,获得20
2秒前
qiu关闭了qiu文献求助
2秒前
洛luo完成签到 ,获得积分20
2秒前
科研通AI5应助薛妖怪采纳,获得10
3秒前
Bellamie发布了新的文献求助10
4秒前
4秒前
健忘小霜完成签到,获得积分10
5秒前
小二郎应助直率的钢铁侠采纳,获得10
5秒前
orixero应助阳阳采纳,获得10
6秒前
8秒前
8秒前
9秒前
科研通AI2S应助陈乐宁2024采纳,获得10
10秒前
10秒前
老木虫发布了新的文献求助10
11秒前
11秒前
13秒前
_37_完成签到,获得积分10
14秒前
ZWTH完成签到,获得积分10
14秒前
15秒前
华叶完成签到,获得积分10
15秒前
TTina完成签到,获得积分10
16秒前
16秒前
香蕉觅云应助慈祥的书易采纳,获得10
16秒前
17秒前
科研通AI5应助anya采纳,获得10
17秒前
我是站长才怪应助柿柿采纳,获得10
18秒前
顾矜应助wzy采纳,获得10
18秒前
陈乐宁2024发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
21秒前
牛腩沉沉应助风中的以山采纳,获得10
21秒前
科研通AI5应助半山采纳,获得30
22秒前
ASD发布了新的文献求助10
22秒前
doomedQL发布了新的文献求助10
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483395
求助须知:如何正确求助?哪些是违规求助? 3072756
关于积分的说明 9127749
捐赠科研通 2764321
什么是DOI,文献DOI怎么找? 1517109
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797