Understanding the composition and function of the blood brain barrier (BBB) enables the development of novel, innovative techniques for administering central nervous system (CNS) medications and technologies for improving the existing models. Scientific and methodological interest in the pathology of the BBB resulted in the formation of numerous in vitro BBB models. Once successfully studied and modelled, it would be a valuable tool for elucidating the mechanism of action of the CNS disorders prior to their manifestation and the pathogenic factors. Understanding the rationale behind the selection of the models as well as their working may enable the development of state-of-the-art drugs for treating and managing neurological diseases. Hence, to have realistic simulation of the BBB and test its drug permeability the microfluidics-based BBB-on-Chip model has been developed. To summarise, we aim to evaluate the advanced, newly developed and frequently used in vitro BBB models, thereby providing a brief overview of the components essential for in vitro BBB formation, the methods of chip fabrication and cell culturing, its applications and the recent advances in this technological field. This will be critical for developing CNS treatments with improved BBB penetrability and pharmacokinetic properties.