分解水
电解质
析氧
限制电流
过电位
催化作用
纳米线
材料科学
塔菲尔方程
化学工程
异质结
化学
电化学
密度泛函理论
纳米技术
电极
物理化学
计算化学
光电子学
有机化学
工程类
光催化
作者
Fei Nie,Zhi Li,Xiaoping Dai,Xueli Yin,Yonghao Gan,Zhaohui Yang,Baoqiang Wu,Ziteng Ren,Yihua Cao,Weiyu Song
标识
DOI:10.1016/j.cej.2021.134080
摘要
Achieving low-cost and high-efficiency oxygen evolution reaction (OER) catalysts by interfacial engineering has attracted numerous attentions. Herein, the combination of selenization of Ni foam (NF) and successive electrodeposition growth of CoFe LDH was proposed to synthesize the three-dimensional heterostructure of NiSe nanowires and CoFe LDH nanosheets on NF ([email protected] LDH/NF) which can enable more accessible active sites, enhanced structural stability, and eliminate contact resistance for OER process. The optimal [email protected] LDH/NF possesses superior OER performance with ultralow overpotential of 203 and 236 mV to achieve 10 and 100 mA cm−2, low Tafel slope of 90.3 mV dec−1 and robust stability in 1.0 M KOH electrolyte. Density functional theory (DFT) calculations unveil that the interfacial synergism on [email protected] LDH can induce electrons redistribution by charge transfer from CoFe LDH to NiSe, and reduce the energy barrier of deprotonation of OH to O as the rate-limiting step by the stronger chemical bond of Fe-O in OER, and thus significantly increase the intrinsic OER activity. Moreover, the two-electrode configuration based on [email protected] LDH/NF||Pt/C/NF couple for driving water splitting can achieve a current density of 300 mA cm−2 at an ultralow voltage of 1.69 V with super stability (100 h). This work provides deep insights into the roles of interfacial electronic modulation by fabrication the three-dimensional heterostructure to design high-efficiency electrocatalysts for OER.
科研通智能强力驱动
Strongly Powered by AbleSci AI