材料科学
阴极
电解质
硫化物
化学工程
锂(药物)
离子电导率
涂层
电导率
储能
图层(电子)
纳米技术
电极
物理化学
冶金
物理
工程类
内分泌学
功率(物理)
化学
医学
量子力学
作者
Zhaoze Fan,Jiayuan Xiang,Yu Qiong,Xianzhang Wu,Min Li,Xiuli Wang,Xinhui Xia,Jiangping Tu
标识
DOI:10.1021/acsami.1c18264
摘要
Sulfide-based all-solid-state lithium batteries (ASSLBs) assembled with Ni-rich layered cathodes are currently promising candidates for achieving high-energy-density and high-safety energy storage systems. However, the interfacial challenges between sulfide electrolyte and Ni-rich layered cathode, such as space charge layer, side reaction, and poor physical contact, greatly limit the practicality of all-solid-state batteries. In this work, an optimal crystalline Li0.35La0.55TiO3 (LLTO) surface coating with a thickness of roughly 6 nm and a high Li ion conductivity of 0.3 mS cm-1 was adopted to enhance the structural stability of the single-crystal LiNi0.6Co0.2Mn0.2O2 (S-NCM622) cathode in ASSLBs. Furthermore, due to the high ionic conductivity and chemical stability of the LLTO coating layer, the interfacial problems, involving interfacial reaction and a space charge layer, in sulfide-based all-solid-state batteries have been effectively solved. As a result, the assembled ASSLBs with the S-NCM622@LLTO cathode exhibit high initial capacity (179.7 mAh g-1) at 0.05 C and excellent cycling performance with 84.5% capacity retention after 100 cycles at 0.1 C at room temperature. This work proposes an effective strategy to enhance the performance of Ni-rich layered cathodes for next-generation high-energy-density sulfide-based lithium batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI