Radiologist-Level Performance Using Deep Learning for Segmentation of Breast Cancers on MRI

医学 乳房磁振造影 分割 威尔科克森符号秩检验 四分位间距 放射科 乳腺癌 卷积神经网络 深度学习 人工智能 乳房成像 核医学
作者
Lukas Hirsch,Yu Huang,Shaojun Luo,Carolina Rossi Saccarelli,Roberto Lo Gullo,Isaac Daimiel Naranjo,Almir Galvão Vieira Bitencourt,Natsuko Onishi,Eun Young Ko,Doris Leithner,Daly Avendano,Sarah Eskreis-Winkler,Mary Hughes,Danny F. Martinez,Katja Pinker-Domenig,Krishna Juluru,Amin E. El-Rowmeim,Pierre Elnajjar,Elizabteh Morris,Hernan A. Makse,Lucas C. Parra,Elizabeth J. Sutton
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.200231
摘要

To develop a deep network architecture that would achieve fully automated radiologist-level segmentation of cancers at breast MRI.In this retrospective study, 38 229 examinations (composed of 64 063 individual breast scans from 14 475 patients) were performed in female patients (age range, 12-94 years; mean age, 52 years ± 10 [standard deviation]) who presented between 2002 and 2014 at a single clinical site. A total of 2555 breast cancers were selected that had been segmented on two-dimensional (2D) images by radiologists, as well as 60 108 benign breasts that served as examples of noncancerous tissue; all these were used for model training. For testing, an additional 250 breast cancers were segmented independently on 2D images by four radiologists. Authors selected among several three-dimensional (3D) deep convolutional neural network architectures, input modalities, and harmonization methods. The outcome measure was the Dice score for 2D segmentation, which was compared between the network and radiologists by using the Wilcoxon signed rank test and the two one-sided test procedure.The highest-performing network on the training set was a 3D U-Net with dynamic contrast-enhanced MRI as input and with intensity normalized for each examination. In the test set, the median Dice score of this network was 0.77 (interquartile range, 0.26). The performance of the network was equivalent to that of the radiologists (two one-sided test procedures with radiologist performance of 0.69-0.84 as equivalence bounds, P < .001 for both; n = 250).When trained on a sufficiently large dataset, the developed 3D U-Net performed as well as fellowship-trained radiologists in detailed 2D segmentation of breast cancers at routine clinical MRI.Keywords: MRI, Breast, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning AlgorithmsPublished under a CC BY 4.0 license. Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一叶知秋发布了新的文献求助10
刚刚
狂野电源发布了新的文献求助10
刚刚
1秒前
俊逸芸遥完成签到,获得积分10
2秒前
2秒前
luck发布了新的文献求助10
3秒前
6秒前
幸福的笨天使完成签到 ,获得积分10
7秒前
DukeTao完成签到,获得积分10
9秒前
肥四发布了新的文献求助10
9秒前
9秒前
12秒前
13秒前
难摧发布了新的文献求助10
13秒前
共享精神应助dsaifjs采纳,获得10
13秒前
哈哈2022完成签到,获得积分10
14秒前
孤独树叶完成签到,获得积分10
14秒前
葡萄成熟应助Tabby采纳,获得10
15秒前
超大杯冰摇红莓黑加仑茶完成签到,获得积分10
16秒前
17秒前
haichao1发布了新的文献求助10
17秒前
燕子发布了新的文献求助10
18秒前
18秒前
Devil发布了新的文献求助10
19秒前
可爱以冬发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
学习完成签到 ,获得积分10
21秒前
思源应助xiamu采纳,获得10
22秒前
22秒前
SS完成签到,获得积分10
23秒前
11冰之泪发布了新的文献求助10
23秒前
顾矜应助肥四采纳,获得10
24秒前
阳光静蕾发布了新的文献求助10
24秒前
26秒前
111发布了新的文献求助10
27秒前
小张完成签到,获得积分10
28秒前
zzyytt完成签到,获得积分10
28秒前
wonder发布了新的文献求助10
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141717
求助须知:如何正确求助?哪些是违规求助? 2792627
关于积分的说明 7803778
捐赠科研通 2448954
什么是DOI,文献DOI怎么找? 1302939
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601244