亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiologist-Level Performance Using Deep Learning for Segmentation of Breast Cancers on MRI

医学 乳房磁振造影 分割 威尔科克森符号秩检验 四分位间距 放射科 乳腺癌 卷积神经网络 深度学习 人工智能 乳房成像 核医学
作者
Lukas Hirsch,Yu Huang,Shaojun Luo,Carolina Rossi Saccarelli,Roberto Lo Gullo,Isaac Daimiel Naranjo,Almir Galvão Vieira Bitencourt,Natsuko Onishi,Eun Young Ko,Doris Leithner,Daly Avendano,Sarah Eskreis-Winkler,Mary Hughes,Danny F. Martinez,Katja Pinker-Domenig,Krishna Juluru,Amin E. El-Rowmeim,Pierre Elnajjar,Elizabteh Morris,Hernan A. Makse,Lucas C. Parra,Elizabeth J. Sutton
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.200231
摘要

To develop a deep network architecture that would achieve fully automated radiologist-level segmentation of cancers at breast MRI.In this retrospective study, 38 229 examinations (composed of 64 063 individual breast scans from 14 475 patients) were performed in female patients (age range, 12-94 years; mean age, 52 years ± 10 [standard deviation]) who presented between 2002 and 2014 at a single clinical site. A total of 2555 breast cancers were selected that had been segmented on two-dimensional (2D) images by radiologists, as well as 60 108 benign breasts that served as examples of noncancerous tissue; all these were used for model training. For testing, an additional 250 breast cancers were segmented independently on 2D images by four radiologists. Authors selected among several three-dimensional (3D) deep convolutional neural network architectures, input modalities, and harmonization methods. The outcome measure was the Dice score for 2D segmentation, which was compared between the network and radiologists by using the Wilcoxon signed rank test and the two one-sided test procedure.The highest-performing network on the training set was a 3D U-Net with dynamic contrast-enhanced MRI as input and with intensity normalized for each examination. In the test set, the median Dice score of this network was 0.77 (interquartile range, 0.26). The performance of the network was equivalent to that of the radiologists (two one-sided test procedures with radiologist performance of 0.69-0.84 as equivalence bounds, P < .001 for both; n = 250).When trained on a sufficiently large dataset, the developed 3D U-Net performed as well as fellowship-trained radiologists in detailed 2D segmentation of breast cancers at routine clinical MRI.Keywords: MRI, Breast, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning AlgorithmsPublished under a CC BY 4.0 license. Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
QCB完成签到 ,获得积分10
4秒前
斩荆披棘发布了新的文献求助10
8秒前
斩荆披棘完成签到,获得积分10
17秒前
wuju发布了新的文献求助10
38秒前
胖小羊完成签到 ,获得积分10
1分钟前
ZYP完成签到,获得积分10
1分钟前
Suraim完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
雨竹完成签到,获得积分10
2分钟前
情怀应助碧蓝的万宝路采纳,获得10
3分钟前
李志全完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Nichols完成签到,获得积分10
4分钟前
星际舟完成签到,获得积分10
5分钟前
Ashao完成签到 ,获得积分10
6分钟前
Otter驳回了华仔应助
6分钟前
英俊的铭应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
KINGAZX完成签到 ,获得积分10
6分钟前
7分钟前
Otter发布了新的文献求助200
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
北国雪未消完成签到 ,获得积分10
8分钟前
8分钟前
9分钟前
芋泥发布了新的文献求助10
9分钟前
Lucas应助rpe采纳,获得10
9分钟前
9分钟前
量子星尘发布了新的文献求助10
9分钟前
9分钟前
rpe发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612045
求助须知:如何正确求助?哪些是违规求助? 4017363
关于积分的说明 12436266
捐赠科研通 3699400
什么是DOI,文献DOI怎么找? 2040114
邀请新用户注册赠送积分活动 1072929
科研通“疑难数据库(出版商)”最低求助积分说明 956610