Radiologist-Level Performance Using Deep Learning for Segmentation of Breast Cancers on MRI

医学 乳房磁振造影 分割 威尔科克森符号秩检验 四分位间距 放射科 乳腺癌 卷积神经网络 深度学习 人工智能 乳房成像 核医学
作者
Lukas Hirsch,Yu Huang,Shaojun Luo,Carolina Rossi Saccarelli,Roberto Lo Gullo,Isaac Daimiel Naranjo,Almir Galvão Vieira Bitencourt,Natsuko Onishi,Eun Young Ko,Doris Leithner,Daly Avendano,Sarah Eskreis-Winkler,Mary Hughes,Danny F. Martinez,Katja Pinker-Domenig,Krishna Juluru,Amin E. El-Rowmeim,Pierre Elnajjar,Elizabteh Morris,Hernan A. Makse,Lucas C. Parra,Elizabeth J. Sutton
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.200231
摘要

To develop a deep network architecture that would achieve fully automated radiologist-level segmentation of cancers at breast MRI.In this retrospective study, 38 229 examinations (composed of 64 063 individual breast scans from 14 475 patients) were performed in female patients (age range, 12-94 years; mean age, 52 years ± 10 [standard deviation]) who presented between 2002 and 2014 at a single clinical site. A total of 2555 breast cancers were selected that had been segmented on two-dimensional (2D) images by radiologists, as well as 60 108 benign breasts that served as examples of noncancerous tissue; all these were used for model training. For testing, an additional 250 breast cancers were segmented independently on 2D images by four radiologists. Authors selected among several three-dimensional (3D) deep convolutional neural network architectures, input modalities, and harmonization methods. The outcome measure was the Dice score for 2D segmentation, which was compared between the network and radiologists by using the Wilcoxon signed rank test and the two one-sided test procedure.The highest-performing network on the training set was a 3D U-Net with dynamic contrast-enhanced MRI as input and with intensity normalized for each examination. In the test set, the median Dice score of this network was 0.77 (interquartile range, 0.26). The performance of the network was equivalent to that of the radiologists (two one-sided test procedures with radiologist performance of 0.69-0.84 as equivalence bounds, P < .001 for both; n = 250).When trained on a sufficiently large dataset, the developed 3D U-Net performed as well as fellowship-trained radiologists in detailed 2D segmentation of breast cancers at routine clinical MRI.Keywords: MRI, Breast, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning AlgorithmsPublished under a CC BY 4.0 license. Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红豆小猫应助积极睫毛采纳,获得10
刚刚
完美麦片完成签到,获得积分10
刚刚
英姑应助tangz采纳,获得10
1秒前
黄瓜橙橙发布了新的文献求助10
1秒前
举不了一点栗子完成签到,获得积分10
1秒前
Andrew完成签到,获得积分10
4秒前
4秒前
景清完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
WLWLW发布了新的文献求助30
6秒前
6秒前
JamesPei应助now采纳,获得10
7秒前
7秒前
维时完成签到,获得积分10
7秒前
K2L完成签到,获得积分10
9秒前
wdy337发布了新的文献求助10
10秒前
火炉猫猫完成签到,获得积分10
10秒前
果果发布了新的文献求助30
10秒前
11发布了新的文献求助10
10秒前
清河完成签到,获得积分10
11秒前
学术垃圾制造者完成签到,获得积分10
11秒前
南风上北山完成签到,获得积分10
11秒前
12秒前
12秒前
专注的轻完成签到,获得积分10
12秒前
zzy完成签到 ,获得积分10
12秒前
sxs完成签到 ,获得积分10
12秒前
又夏完成签到,获得积分10
13秒前
zhang完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
lizhaoyu应助xiaoliu采纳,获得30
14秒前
wf完成签到,获得积分10
14秒前
红黄蓝完成签到 ,获得积分10
14秒前
张牧之完成签到 ,获得积分10
15秒前
15秒前
失眠的汽车完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044