Co-Optimization of Velocity and Charge-Depletion for Plug-In Hybrid Electric Vehicles: Accounting for Acceleration and Jerk Constraints

动力传动系统 混蛋 控制理论(社会学) 最优控制 数学优化 计算机科学 最优化问题 缩小 控制工程 工程类
作者
Di Chen,Mike Huang,Anna G. Stefanopoulou,Youngki Kim
出处
期刊:Journal of Dynamic Systems Measurement and Control-transactions of The Asme [ASM International]
标识
DOI:10.1115/1.4053139
摘要

Abstract Recent advances in vehicle connectivity and automation technologies promote advanced control algorithms that co-optimize the longitudinal dynamics and powertrain operation of hybrid electric vehicles. Typically, a sequential optimization with the vehicle dynamics optimized followed by powertrain optimization is adopted to manage a number of complexities such as the inherent mixed-integer nature of the hybrid powertrain, the numerous state and control variables, the differing time scales of vehicle and powertrain subsystems, time-varying state constraints, and large horizon lengths. Instead, we solve the offline optimization problem in a centralize manner assuming exact knowledge of the lead vehicle's position over the entire trip by applying a discrete-time single shooting-based numerical approach, Discrete Mixed-Integer Shooting (DMIS), including a linearly increasing computational complexity to the problem horizon. In particular, the hierarchical problem structure is exploited to decompose the computationally intensive Hamiltonian minimization step into a set of low-dimensional optimizations. DMIS allows us to compute the direct fuel minimization problem including the vehicle and powertrain dynamics in a centralized manner to its full horizon while systematically tuning weighting factors that penalize passenger discomfort. For the first time, this study reveals that practically implemented sequential optimization exhibits similar fuel optimality as co-optimization when a certain level of passenger comfort is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你的发布了新的文献求助10
刚刚
刚刚
一壶古酒完成签到,获得积分10
1秒前
Hello应助黄晟钊采纳,获得10
1秒前
透明的木头完成签到,获得积分10
1秒前
1秒前
天天快乐应助热情芷荷采纳,获得10
1秒前
Vanilla应助玲℃采纳,获得20
1秒前
1秒前
2秒前
852应助张泽华采纳,获得10
2秒前
2秒前
今天开心吗完成签到 ,获得积分10
2秒前
cyrexssol完成签到 ,获得积分10
2秒前
lq发布了新的文献求助10
2秒前
上官若男应助嗜血啊阳采纳,获得10
2秒前
GJJJJJJJ应助大甜瓜采纳,获得50
2秒前
3秒前
3秒前
杜松子完成签到,获得积分10
3秒前
3秒前
熏同学发布了新的文献求助10
4秒前
科研通AI5应助早日发论文采纳,获得10
4秒前
科研通AI5应助早日发论文采纳,获得10
4秒前
123456666发布了新的文献求助10
4秒前
浅味书香完成签到,获得积分20
4秒前
hanzhua132完成签到,获得积分10
4秒前
付威威完成签到,获得积分10
4秒前
科研通AI6应助xrt采纳,获得10
4秒前
努力努力完成签到,获得积分10
4秒前
Jackey1ov3发布了新的文献求助10
4秒前
lkc发布了新的文献求助30
5秒前
所所应助splemeth采纳,获得10
5秒前
田様应助lzy303886采纳,获得10
5秒前
这是个胖子完成签到,获得积分10
5秒前
刘家鹏发布了新的文献求助10
5秒前
myduty发布了新的文献求助10
6秒前
6秒前
龙龙ff11_完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068023
求助须知:如何正确求助?哪些是违规求助? 4289750
关于积分的说明 13365025
捐赠科研通 4109504
什么是DOI,文献DOI怎么找? 2250387
邀请新用户注册赠送积分活动 1255727
关于科研通互助平台的介绍 1188244