Co-Optimization of Velocity and Charge-Depletion for Plug-In Hybrid Electric Vehicles: Accounting for Acceleration and Jerk Constraints

动力传动系统 混蛋 控制理论(社会学) 最优控制 数学优化 计算机科学 最优化问题 缩小 控制工程 工程类
作者
Di Chen,Mike Huang,Anna G. Stefanopoulou,Youngki Kim
出处
期刊:Journal of Dynamic Systems Measurement and Control-transactions of The Asme [ASME International]
标识
DOI:10.1115/1.4053139
摘要

Abstract Recent advances in vehicle connectivity and automation technologies promote advanced control algorithms that co-optimize the longitudinal dynamics and powertrain operation of hybrid electric vehicles. Typically, a sequential optimization with the vehicle dynamics optimized followed by powertrain optimization is adopted to manage a number of complexities such as the inherent mixed-integer nature of the hybrid powertrain, the numerous state and control variables, the differing time scales of vehicle and powertrain subsystems, time-varying state constraints, and large horizon lengths. Instead, we solve the offline optimization problem in a centralize manner assuming exact knowledge of the lead vehicle's position over the entire trip by applying a discrete-time single shooting-based numerical approach, Discrete Mixed-Integer Shooting (DMIS), including a linearly increasing computational complexity to the problem horizon. In particular, the hierarchical problem structure is exploited to decompose the computationally intensive Hamiltonian minimization step into a set of low-dimensional optimizations. DMIS allows us to compute the direct fuel minimization problem including the vehicle and powertrain dynamics in a centralized manner to its full horizon while systematically tuning weighting factors that penalize passenger discomfort. For the first time, this study reveals that practically implemented sequential optimization exhibits similar fuel optimality as co-optimization when a certain level of passenger comfort is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗小兔子完成签到,获得积分10
刚刚
百川完成签到,获得积分10
刚刚
wanci应助JJJ采纳,获得30
刚刚
伶俐的凉面应助初余采纳,获得10
1秒前
1秒前
PanLi发布了新的文献求助10
2秒前
yoyo完成签到,获得积分10
2秒前
笑笑发布了新的文献求助10
3秒前
4秒前
老黄鱼完成签到,获得积分10
4秒前
4秒前
5秒前
tujamo完成签到,获得积分10
5秒前
所所应助1111采纳,获得10
5秒前
5秒前
卢卉双发布了新的文献求助10
7秒前
ZRT134完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
英俊的铭应助笑笑采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
bubble发布了新的文献求助10
11秒前
可乐发布了新的文献求助10
11秒前
ZAL发布了新的文献求助10
12秒前
Xzx1995发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
15秒前
15秒前
希望天下0贩的0应助宸昶采纳,获得10
16秒前
大模型应助干净冬莲采纳,获得10
16秒前
所所应助憨憨采纳,获得10
16秒前
18秒前
19秒前
科研通AI2S应助炙热灰狼采纳,获得10
20秒前
hhhg应助大气奄采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430695
求助须知:如何正确求助?哪些是违规求助? 4543745
关于积分的说明 14189043
捐赠科研通 4462220
什么是DOI,文献DOI怎么找? 2446443
邀请新用户注册赠送积分活动 1437819
关于科研通互助平台的介绍 1414530