Microstructure dependent chemo-mechanical behavior of amorphous Si anodes for Li-ion batteries upon delithiation

材料科学 阳极 无定形固体 微观结构 分子动力学 电池(电) 电化学 极限抗拉强度 应力松弛 放松(心理学) 压力(语言学) 变形(气象学) 化学物理 复合材料 化学工程 热力学 结晶学 计算化学 物理化学 电极 化学 蠕动 物理 功率(物理) 哲学 工程类 社会心理学 语言学 心理学
作者
Mingchao Wang,Han Ye
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:520: 230803-230803 被引量:14
标识
DOI:10.1016/j.jpowsour.2021.230803
摘要

Alloying-type anodes exhibit the solid-state amorphization during charging/discharging cycles. The mechanical and electrochemical properties of amorphous reaction phases have been widely explored recently. However, there is still lack of understanding of the underlying mircostructure-property relation in the delithiation behavior of alloying anodes. Here we perform molecular dynamics simulations to investigate the microstructure effect on the chemo-mechanical properties of amorphous Si (a-Si) anodes upon delithiation. It is indicated that stress-free delithiation without sufficient structural relaxation leads to the gradual accumulation of structural disorder (the increase of excess energy) in amorphous Li-Si systems (a-LixSi). The creation of structural disorder during delithiation not only facilitates the plastic deformation of a-LixSi at lower stress, but also thermodynamically destabilizes a-LixSi associated with the drop of open-cell potentials. While upon constrained delithiation, the initial value of excess energy and reaction stress both contribute to the increase of structural disorder during delithiation process. Based on the stress-dependent chemical-potential model, the tensile stress increases open-cell potentials, and reduces the Li chemical potential which weakens the driving force for delithiation. As a result, the structural disorder and tensile reaction stress may cause the undesirable capacity fading of a-Si anodes, and is detrimental to the battery performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研助理发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
Eliauk完成签到,获得积分10
1秒前
ycp完成签到,获得积分10
2秒前
遇疯儿完成签到,获得积分10
3秒前
3秒前
刘佳恬发布了新的文献求助10
3秒前
聪明的梦松完成签到,获得积分20
3秒前
南音发布了新的文献求助10
4秒前
4秒前
香蕉觅云应助鳗鱼鞋垫采纳,获得10
4秒前
蔺铁身完成签到,获得积分20
4秒前
wenmu发布了新的文献求助10
5秒前
5秒前
华仔应助Alpha采纳,获得10
5秒前
粗暴的达完成签到,获得积分10
6秒前
Lucas应助wwy采纳,获得10
6秒前
科研通AI6应助向阳采纳,获得10
6秒前
风趣思山完成签到,获得积分10
6秒前
fsz发布了新的文献求助10
6秒前
遇疯儿发布了新的文献求助10
6秒前
NexusExplorer应助山月采纳,获得10
7秒前
希望天下0贩的0应助xcy采纳,获得10
8秒前
Mic应助科研通管家采纳,获得10
8秒前
wxyshare应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
yznfly应助科研通管家采纳,获得50
8秒前
JamesPei应助科研通管家采纳,获得10
9秒前
Mic应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
慕青应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680