Development and Validation of a Nomogram for Predicting Sarcopenia in Community-Dwelling Older Adults

列线图 肌萎缩 医学 接收机工作特性 逻辑回归 老年学 多元分析 体质指数 风险评估 婚姻状况 物理疗法 内科学 环境卫生 人口 计算机安全 计算机科学
作者
Yihan Mo,Yi-Dong Su,Xin Dong,Jing Zhong,Chen Yang,Wenyu Deng,Xuemei Yao,Beibei Liu,Xiuhua Wang
出处
期刊:Journal of the American Medical Directors Association [Elsevier]
卷期号:23 (5): 715-721.e5 被引量:42
标识
DOI:10.1016/j.jamda.2021.11.023
摘要

Objective To establish and validate a nomogram that predicts the risk of sarcopenia for community-dwelling older residents. Design Retrospective study. Setting and Participants A total of 1050 community-dwelling older adults. Methods Data from a survey of community-dwelling older residents (≥60 years old) in Hunan, China, from June to September 2019 were retrospectively analyzed. The survey included general demographic information, diet, and exercise habits. Sarcopenia diagnosis was according to 2019 Asian Working Group for Sarcopenia criteria. Participants were randomly divided into the development group and validation groups. Independent risk factors were screened by multivariate logistic regression analysis. Based on the independent risk factors, a nomogram model was developed to predict the risk of sarcopenia for community-dwelling older adults. Both in the development and validation sets, the discrimination, calibration, and clinical practicability of the nomogram were verified using receiver operating characteristic curve analysis, Hosmer-Lemeshow test, and decision curve analysis, respectively. Results Sarcopenia was identified in 263 (25.0%) participants. Age, body mass index, marital status, regular physical activity habit, uninterrupted sedentary time, and dietary diversity score were significant contributors to sarcopenia risk. A nomogram for predicting sarcopenia in community-dwelling older adults was developed using these factors. Receiver operating characteristic curve analysis showed that the area under the curve was 0.827 (95% CI 0.792-0.860) and 0.755 (95% CI 0.680-0.837) in the development and validation sets, respectively. The Hosmer-Lemeshow test yielded P values of .609 and .565, respectively, for the 2 sets. The nomogram demonstrated a high net benefit in the clinical decision curve in both sets. Conclusions and Implications This study developed and validated a risk prediction nomogram for sarcopenia among community-dwelling older adults. Sarcopenia risk was classified as low (<11%), moderate (11%-70%), and high (>70%). This nomogram provides an accurate visual tool to medical staff, caregivers, and older adults for prediction, early intervention, and graded management of sarcopenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
文文完成签到 ,获得积分10
1秒前
1秒前
好大一碗粥完成签到 ,获得积分10
1秒前
Hibiki完成签到,获得积分10
1秒前
Oreki完成签到,获得积分10
1秒前
Wuzhhhh发布了新的文献求助10
1秒前
无极微光应助殷勤的紫槐采纳,获得20
2秒前
完美世界应助指北针采纳,获得10
2秒前
2秒前
科研通AI6应助研友_LN7x6n采纳,获得10
2秒前
可爱的函函应助机智忆文采纳,获得10
3秒前
4秒前
科研通AI6应助顺利的藏今采纳,获得10
4秒前
4秒前
连秋完成签到,获得积分10
5秒前
细心小鸽子完成签到,获得积分10
5秒前
5秒前
D&L发布了新的文献求助10
6秒前
俭朴凝冬完成签到,获得积分10
6秒前
忧郁的白竹完成签到,获得积分20
6秒前
7秒前
zxc111完成签到,获得积分10
7秒前
8秒前
9秒前
kyt发布了新的文献求助10
9秒前
Akim应助小城故事和冰雨采纳,获得10
9秒前
传奇3应助00采纳,获得30
9秒前
万能图书馆应助陈红采纳,获得10
10秒前
adobe发布了新的文献求助10
10秒前
Akim应助Tayyy采纳,获得10
10秒前
10秒前
嘞是举仔发布了新的文献求助10
10秒前
高兴的问儿完成签到 ,获得积分10
11秒前
zgnb发布了新的文献求助10
11秒前
11秒前
千千完成签到,获得积分10
11秒前
11秒前
11秒前
zt完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524260
求助须知:如何正确求助?哪些是违规求助? 4614804
关于积分的说明 14544904
捐赠科研通 4552714
什么是DOI,文献DOI怎么找? 2494932
邀请新用户注册赠送积分活动 1475626
关于科研通互助平台的介绍 1447330