Evaluation of Mental Workload in Working Memory Tasks with Different Information Types Based on EEG

样本熵 脑电图 工作量 计算机科学 熵(时间箭头) 阿尔法(金融) 工作记忆 心理学 人工智能 认知心理学 模式识别(心理学) 语音识别 认知 发展心理学 神经科学 心理测量学 量子力学 结构效度 操作系统 物理
作者
Kai Guan,Xiaoke Chai,Zhimin Zhang,Qian Li,Haijun Niu
标识
DOI:10.1109/embc46164.2021.9630575
摘要

To explore the effectiveness of using Electro- encephalogram (EEG) spectral power and multiscale sample entropy for accessing mental workload in different tasks, working memory tasks with different information types (verbal, object and spatial) and various mental loads were designed based on the N-Back paradigm. Subjective scores, accuracy and response time were used to verify the rationality of the tasks. EEGs from 18 normal adults were acquired when tasks were being performed, an independent component analysis (ICA) based artifact removal method were applied to get clean data. Linear (relative power in Theta and Alpha band, etc.) and nonlinear (multiscale sample entropy) features of EEGs were then extracted. Indices that can effectively reflect mental workload levels were selected by using multivariate analysis of variance statistical approach. Results showed that with the increment of task load, power of frontal Theta, Theta/Alpha ratio and sample entropies at scale more than 10 in parietal regions increased significantly first and decreased slightly then, while the power of central-parietal Alpha decreased significantly first and increased slightly then. Considering the difference between task types, no difference in power of frontal Theta, central-parietal Alpha and sample entropies at scales more than 10 of parietal regions were found between verbal and object tasks, as well as between two spatial tasks. No difference of frontal Theta/Alpha ratio was found in all the four tasks. The results can provide evidence for the mental workload evaluation in tasks with different information types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老福贵儿应助科研通管家采纳,获得10
刚刚
乔垣结衣完成签到,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
老福贵儿应助科研通管家采纳,获得10
1秒前
TranYan完成签到,获得积分10
1秒前
再睡十分钟完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助楠楠DAYTOY采纳,获得10
3秒前
不吃坏橘子完成签到,获得积分10
3秒前
3秒前
双目识林完成签到 ,获得积分10
4秒前
落霞完成签到,获得积分10
4秒前
Malmever完成签到,获得积分10
4秒前
4秒前
李二狗完成签到,获得积分10
5秒前
5秒前
5秒前
打打应助元谷雪采纳,获得10
5秒前
你好完成签到,获得积分10
5秒前
求助人员发布了新的文献求助50
5秒前
追寻紫安完成签到,获得积分10
6秒前
专注钢笔发布了新的文献求助10
6秒前
6秒前
香冢弃了残红完成签到,获得积分10
7秒前
合适夏天完成签到,获得积分10
7秒前
卡皮巴拉yuan完成签到,获得积分10
8秒前
LL完成签到,获得积分10
8秒前
希翼发布了新的文献求助10
9秒前
闵夏完成签到,获得积分10
9秒前
璟晔完成签到,获得积分10
9秒前
高分子物理不会完成签到,获得积分10
9秒前
细心的雁玉完成签到,获得积分10
9秒前
小松菜奈完成签到 ,获得积分10
10秒前
树L发布了新的文献求助10
10秒前
俏皮颤完成签到,获得积分10
10秒前
Bin_Liu完成签到,获得积分20
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197