Evaluation of Mental Workload in Working Memory Tasks with Different Information Types Based on EEG

样本熵 脑电图 工作量 计算机科学 熵(时间箭头) 阿尔法(金融) 工作记忆 心理学 人工智能 认知心理学 模式识别(心理学) 语音识别 认知 发展心理学 神经科学 心理测量学 量子力学 结构效度 操作系统 物理
作者
Kai Guan,Xiaoke Chai,Zhimin Zhang,Qian Li,Haijun Niu
标识
DOI:10.1109/embc46164.2021.9630575
摘要

To explore the effectiveness of using Electro- encephalogram (EEG) spectral power and multiscale sample entropy for accessing mental workload in different tasks, working memory tasks with different information types (verbal, object and spatial) and various mental loads were designed based on the N-Back paradigm. Subjective scores, accuracy and response time were used to verify the rationality of the tasks. EEGs from 18 normal adults were acquired when tasks were being performed, an independent component analysis (ICA) based artifact removal method were applied to get clean data. Linear (relative power in Theta and Alpha band, etc.) and nonlinear (multiscale sample entropy) features of EEGs were then extracted. Indices that can effectively reflect mental workload levels were selected by using multivariate analysis of variance statistical approach. Results showed that with the increment of task load, power of frontal Theta, Theta/Alpha ratio and sample entropies at scale more than 10 in parietal regions increased significantly first and decreased slightly then, while the power of central-parietal Alpha decreased significantly first and increased slightly then. Considering the difference between task types, no difference in power of frontal Theta, central-parietal Alpha and sample entropies at scales more than 10 of parietal regions were found between verbal and object tasks, as well as between two spatial tasks. No difference of frontal Theta/Alpha ratio was found in all the four tasks. The results can provide evidence for the mental workload evaluation in tasks with different information types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助想龙空采纳,获得10
刚刚
刚刚
万能图书馆应助坦率尔曼采纳,获得10
1秒前
顾矜应助Nsync采纳,获得10
1秒前
充电宝应助虚拟的乐萱采纳,获得10
2秒前
英俊的铭应助ns采纳,获得50
2秒前
李佳明完成签到,获得积分10
2秒前
大胆的弼完成签到,获得积分10
2秒前
菜鸡完成签到,获得积分10
2秒前
3秒前
orixero应助嘟嘟采纳,获得10
3秒前
3秒前
zhechen发布了新的文献求助10
4秒前
童宝完成签到,获得积分10
4秒前
蒙蒙雨歌发布了新的文献求助20
4秒前
Nick Green完成签到,获得积分10
5秒前
8秒前
阔达鑫发布了新的文献求助30
8秒前
Rowan发布了新的文献求助10
8秒前
9秒前
壮观定帮完成签到,获得积分10
10秒前
10秒前
11秒前
略略略发布了新的文献求助10
11秒前
11秒前
11秒前
xiaoX12138发布了新的文献求助10
11秒前
scutwqq完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
applelpypies完成签到 ,获得积分0
13秒前
复杂纸飞机完成签到,获得积分10
14秒前
14秒前
15秒前
帅哥许发布了新的文献求助20
16秒前
科研通AI6应助有kj采纳,获得10
16秒前
boatmann完成签到,获得积分10
17秒前
17秒前
Dan发布了新的文献求助10
17秒前
CodeCraft应助生鱼安乐采纳,获得10
17秒前
Sue发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409994
求助须知:如何正确求助?哪些是违规求助? 4527505
关于积分的说明 14111164
捐赠科研通 4441880
什么是DOI,文献DOI怎么找? 2437744
邀请新用户注册赠送积分活动 1429674
关于科研通互助平台的介绍 1407750