材料科学
空位缺陷
电催化剂
法拉第效率
密度泛函理论
催化作用
异质结
氧化还原
化学吸附
结晶学
电化学
物理化学
计算化学
化学
光电子学
电极
生物化学
冶金
作者
Ke Chu,Yaojing Luo,Peng Shen,Xingchuan Li,Qingqing Li,Yali Guo
标识
DOI:10.1002/aenm.202103022
摘要
Abstract The electrochemical N 2 reduction reaction (NRR) offers a promising approach for sustainable NH 3 production, and modulating the structural/electronic configurations of the catalyst materials with optimized electrocatalytic properties is pivotal for achieving high‐efficiency NRR electrocatalysis. Herein, vacancy and heterostructure engineering are rationally integrated to explore O‐vacancy‐rich MoO 3‐ x anchored on Ti 3 C 2 T x ‐MXene (MoO 3‐ x /MXene) as a highly active and selective NRR electrocatalyst, achieving an exceptional NRR activity with an NH 3 yield of 95.8 µg h −1 mg −1 (−0.4 V) and a Faradaic efficiency of 22.3% (−0.3 V). A combination of in situ spectroscopy, molecular dynamics simulations and density functional theory computations is employed to unveil the synergistic effect of O‐vacancies and heterostructures for the NRR, which demonstrates that O‐vacancies on MoO 3‐ x serve as the active sites for N 2 chemisorption and activation, while the MXene substrate can further regulate the O‐vacancy sites to break the scaling relation to effectively stabilize *N 2 /*N 2 H while destabilizing *NH 2 /*NH 3 , resulting in more optimized binding affinity of NRR intermediates toward reduced energy barriers and an enhanced NRR activity for MoO 3‐ x /MXene.
科研通智能强力驱动
Strongly Powered by AbleSci AI