亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images

计算机科学 人工智能 目标检测 卷积神经网络 特征学习 深度学习 计算机视觉 不变(物理) 视觉对象识别的认知神经科学 模式识别(心理学) 特征提取 数学 数学物理
作者
Gong Cheng,Peicheng Zhou,Junwei Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:54 (12): 7405-7415 被引量:1582
标识
DOI:10.1109/tgrs.2016.2601622
摘要

Object detection in very high resolution optical remote sensing images is a fundamental problem faced for remote sensing image analysis. Due to the advances of powerful feature representations, machine-learning-based object detection is receiving increasing attention. Although numerous feature representations exist, most of them are handcrafted or shallow-learning-based features. As the object detection task becomes more challenging, their description capability becomes limited or even impoverished. More recently, deep learning algorithms, especially convolutional neural networks (CNNs), have shown their much stronger feature representation power in computer vision. Despite the progress made in nature scene images, it is problematic to directly use the CNN feature for object detection in optical remote sensing images because it is difficult to effectively deal with the problem of object rotation variations. To address this problem, this paper proposes a novel and effective approach to learn a rotation-invariant CNN (RICNN) model for advancing the performance of object detection, which is achieved by introducing and learning a new rotation-invariant layer on the basis of the existing CNN architectures. However, different from the training of traditional CNN models that only optimizes the multinomial logistic regression objective, our RICNN model is trained by optimizing a new objective function via imposing a regularization constraint, which explicitly enforces the feature representations of the training samples before and after rotating to be mapped close to each other, hence achieving rotation invariance. To facilitate training, we first train the rotation-invariant layer and then domain-specifically fine-tune the whole RICNN network to further boost the performance. Comprehensive evaluations on a publicly available ten-class object detection data set demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ma121完成签到,获得积分10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
23秒前
57秒前
刺1656发布了新的文献求助10
1分钟前
1分钟前
jiangmi完成签到,获得积分10
1分钟前
Sene完成签到,获得积分10
1分钟前
andrele应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
感动初蓝完成签到 ,获得积分10
2分钟前
橘橘橘子皮完成签到 ,获得积分10
2分钟前
2分钟前
蒙恩Maria发布了新的文献求助10
3分钟前
3分钟前
蒙恩Maria完成签到,获得积分10
3分钟前
Pattis完成签到 ,获得积分10
3分钟前
鲸鱼完成签到 ,获得积分10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
bkagyin应助科研通管家采纳,获得10
4分钟前
moaner完成签到,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
优秀的甜菜完成签到,获得积分10
5分钟前
zznzn发布了新的文献求助10
5分钟前
Hello应助zznzn采纳,获得10
5分钟前
橘笙发布了新的文献求助10
5分钟前
Ricardo完成签到 ,获得积分10
5分钟前
6分钟前
橘笙完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
andrele应助科研通管家采纳,获得10
6分钟前
SciGPT应助科研通管家采纳,获得10
6分钟前
迷路的曼梅完成签到,获得积分10
6分钟前
852应助留白采纳,获得10
6分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4912050
关于积分的说明 15134209
捐赠科研通 4829983
什么是DOI,文献DOI怎么找? 2586558
邀请新用户注册赠送积分活动 1540225
关于科研通互助平台的介绍 1498423