Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images

计算机科学 人工智能 目标检测 卷积神经网络 特征学习 深度学习 计算机视觉 不变(物理) 视觉对象识别的认知神经科学 模式识别(心理学) 特征提取 数学 数学物理
作者
Gong Cheng,Peicheng Zhou,Junwei Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:54 (12): 7405-7415 被引量:1582
标识
DOI:10.1109/tgrs.2016.2601622
摘要

Object detection in very high resolution optical remote sensing images is a fundamental problem faced for remote sensing image analysis. Due to the advances of powerful feature representations, machine-learning-based object detection is receiving increasing attention. Although numerous feature representations exist, most of them are handcrafted or shallow-learning-based features. As the object detection task becomes more challenging, their description capability becomes limited or even impoverished. More recently, deep learning algorithms, especially convolutional neural networks (CNNs), have shown their much stronger feature representation power in computer vision. Despite the progress made in nature scene images, it is problematic to directly use the CNN feature for object detection in optical remote sensing images because it is difficult to effectively deal with the problem of object rotation variations. To address this problem, this paper proposes a novel and effective approach to learn a rotation-invariant CNN (RICNN) model for advancing the performance of object detection, which is achieved by introducing and learning a new rotation-invariant layer on the basis of the existing CNN architectures. However, different from the training of traditional CNN models that only optimizes the multinomial logistic regression objective, our RICNN model is trained by optimizing a new objective function via imposing a regularization constraint, which explicitly enforces the feature representations of the training samples before and after rotating to be mapped close to each other, hence achieving rotation invariance. To facilitate training, we first train the rotation-invariant layer and then domain-specifically fine-tune the whole RICNN network to further boost the performance. Comprehensive evaluations on a publicly available ten-class object detection data set demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiuxiuzhang发布了新的文献求助10
1秒前
可爱的小朋友完成签到,获得积分10
2秒前
FashionBoy应助shenhongru采纳,获得10
2秒前
QQQ完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
5秒前
斯文败类应助WEAWEA采纳,获得10
6秒前
6秒前
7秒前
科研通AI2S应助如意的冰双采纳,获得10
8秒前
能干的问晴完成签到,获得积分10
9秒前
miemie66发布了新的文献求助10
9秒前
香芋完成签到 ,获得积分10
9秒前
nihao发布了新的文献求助10
9秒前
9秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
韩野发布了新的文献求助10
14秒前
山海完成签到,获得积分10
14秒前
penpen发布了新的文献求助10
14秒前
15秒前
张芃尧完成签到,获得积分20
16秒前
天天快乐应助CHEN采纳,获得10
16秒前
16秒前
量子星尘发布了新的文献求助10
18秒前
SciGPT应助hearz采纳,获得10
18秒前
18秒前
孙元应助zzz采纳,获得10
19秒前
19秒前
元谷雪发布了新的文献求助10
20秒前
英姑应助Vizz采纳,获得10
20秒前
起个名真难完成签到,获得积分10
20秒前
幻影完成签到 ,获得积分10
20秒前
ayintree完成签到,获得积分10
21秒前
21秒前
小蘑菇应助mm采纳,获得10
21秒前
Nan发布了新的文献求助200
21秒前
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233