Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images

计算机科学 人工智能 目标检测 卷积神经网络 特征学习 深度学习 计算机视觉 不变(物理) 视觉对象识别的认知神经科学 模式识别(心理学) 特征提取 数学 数学物理
作者
Gong Cheng,Peicheng Zhou,Junwei Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:54 (12): 7405-7415 被引量:1582
标识
DOI:10.1109/tgrs.2016.2601622
摘要

Object detection in very high resolution optical remote sensing images is a fundamental problem faced for remote sensing image analysis. Due to the advances of powerful feature representations, machine-learning-based object detection is receiving increasing attention. Although numerous feature representations exist, most of them are handcrafted or shallow-learning-based features. As the object detection task becomes more challenging, their description capability becomes limited or even impoverished. More recently, deep learning algorithms, especially convolutional neural networks (CNNs), have shown their much stronger feature representation power in computer vision. Despite the progress made in nature scene images, it is problematic to directly use the CNN feature for object detection in optical remote sensing images because it is difficult to effectively deal with the problem of object rotation variations. To address this problem, this paper proposes a novel and effective approach to learn a rotation-invariant CNN (RICNN) model for advancing the performance of object detection, which is achieved by introducing and learning a new rotation-invariant layer on the basis of the existing CNN architectures. However, different from the training of traditional CNN models that only optimizes the multinomial logistic regression objective, our RICNN model is trained by optimizing a new objective function via imposing a regularization constraint, which explicitly enforces the feature representations of the training samples before and after rotating to be mapped close to each other, hence achieving rotation invariance. To facilitate training, we first train the rotation-invariant layer and then domain-specifically fine-tune the whole RICNN network to further boost the performance. Comprehensive evaluations on a publicly available ten-class object detection data set demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助钱多多采纳,获得10
刚刚
dahua发布了新的文献求助10
刚刚
乔娜完成签到,获得积分10
刚刚
科研通AI6应助momo采纳,获得10
1秒前
碝磩完成签到,获得积分10
1秒前
啦啦啦啦啦完成签到,获得积分20
1秒前
1秒前
好好学习完成签到 ,获得积分10
1秒前
1秒前
子车茗应助白开水采纳,获得30
2秒前
啧啧完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
ihtw发布了新的文献求助10
3秒前
斯文败类应助turbohero采纳,获得10
3秒前
石头发布了新的文献求助10
3秒前
YY完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
科研通AI6应助lin采纳,获得30
5秒前
bkagyin应助超帅凡阳采纳,获得10
5秒前
5秒前
6秒前
6秒前
大模型应助喵喵采纳,获得10
6秒前
小马甲应助天线宝宝采纳,获得10
7秒前
Buduan完成签到,获得积分10
7秒前
nightgaunt发布了新的文献求助10
7秒前
草莓雪酪完成签到 ,获得积分10
7秒前
ZC发布了新的文献求助10
7秒前
深情安青应助白宇采纳,获得10
7秒前
慕青应助李超强采纳,获得10
7秒前
8秒前
深情的访彤完成签到,获得积分20
8秒前
眼圆广志完成签到,获得积分10
8秒前
Cruella发布了新的文献求助10
9秒前
魔幻的凌波完成签到,获得积分20
9秒前
Aiden发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545851
求助须知:如何正确求助?哪些是违规求助? 4631846
关于积分的说明 14622939
捐赠科研通 4573564
什么是DOI,文献DOI怎么找? 2507609
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455594