Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images

计算机科学 人工智能 目标检测 卷积神经网络 特征学习 深度学习 计算机视觉 不变(物理) 视觉对象识别的认知神经科学 模式识别(心理学) 特征提取 数学 数学物理
作者
Gong Cheng,Peicheng Zhou,Junwei Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:54 (12): 7405-7415 被引量:1564
标识
DOI:10.1109/tgrs.2016.2601622
摘要

Object detection in very high resolution optical remote sensing images is a fundamental problem faced for remote sensing image analysis. Due to the advances of powerful feature representations, machine-learning-based object detection is receiving increasing attention. Although numerous feature representations exist, most of them are handcrafted or shallow-learning-based features. As the object detection task becomes more challenging, their description capability becomes limited or even impoverished. More recently, deep learning algorithms, especially convolutional neural networks (CNNs), have shown their much stronger feature representation power in computer vision. Despite the progress made in nature scene images, it is problematic to directly use the CNN feature for object detection in optical remote sensing images because it is difficult to effectively deal with the problem of object rotation variations. To address this problem, this paper proposes a novel and effective approach to learn a rotation-invariant CNN (RICNN) model for advancing the performance of object detection, which is achieved by introducing and learning a new rotation-invariant layer on the basis of the existing CNN architectures. However, different from the training of traditional CNN models that only optimizes the multinomial logistic regression objective, our RICNN model is trained by optimizing a new objective function via imposing a regularization constraint, which explicitly enforces the feature representations of the training samples before and after rotating to be mapped close to each other, hence achieving rotation invariance. To facilitate training, we first train the rotation-invariant layer and then domain-specifically fine-tune the whole RICNN network to further boost the performance. Comprehensive evaluations on a publicly available ten-class object detection data set demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助孙刚采纳,获得10
刚刚
linyuiz关注了科研通微信公众号
刚刚
客官们帮帮忙完成签到,获得积分10
1秒前
zhaoyang完成签到 ,获得积分10
1秒前
暖冬22完成签到,获得积分10
2秒前
大力老木关注了科研通微信公众号
2秒前
星辰大海应助ZJJ采纳,获得10
3秒前
Rubby应助慕慕倾采纳,获得10
3秒前
3秒前
DWF完成签到,获得积分20
4秒前
叶舟完成签到,获得积分10
4秒前
Kingcrimson发布了新的文献求助10
4秒前
Natforever完成签到 ,获得积分10
4秒前
刘晓宇完成签到,获得积分10
4秒前
5秒前
alverine完成签到,获得积分10
5秒前
Wind发布了新的文献求助10
5秒前
6秒前
月下荷花发布了新的文献求助10
6秒前
郭达仲完成签到 ,获得积分10
7秒前
花开的声音1217完成签到,获得积分10
8秒前
孙福禄应助mrz采纳,获得10
8秒前
开心蘑菇应助Natforever采纳,获得10
8秒前
9秒前
do0完成签到,获得积分10
9秒前
10秒前
甜菜发布了新的文献求助10
11秒前
冰冰发布了新的文献求助10
11秒前
13秒前
狗不理发布了新的文献求助10
13秒前
帅仁123完成签到,获得积分20
13秒前
晴晴完成签到,获得积分10
14秒前
书生完成签到,获得积分10
14秒前
在水一方应助星星采纳,获得10
14秒前
14秒前
Rachel完成签到,获得积分20
15秒前
SHIROKO完成签到,获得积分10
15秒前
nns完成签到,获得积分10
15秒前
派大星发布了新的文献求助10
16秒前
兜兜窦完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635