Identification of an Intestinal Microbiota Signature Associated With Severity of Irritable Bowel Syndrome

肠易激综合征 内科学 胃肠病学 鉴定(生物学) 医学 小肠细菌生长过度 生物 生态学
作者
Julien Tap,Muriel Derrien,Hans Törnblom,Rémi Brazeilles,Stéphanie Cools-Portier,Joël Doré,Stine Störsrud,Boris Le Nevé,Lena Öhman,Magnus Simrén
出处
期刊:Gastroenterology [Elsevier]
卷期号:152 (1): 111-123.e8 被引量:548
标识
DOI:10.1053/j.gastro.2016.09.049
摘要

We have limited knowledge about the association between the composition of the intestinal microbiota and clinical features of irritable bowel syndrome (IBS). We collected information on the fecal and mucosa-associated microbiota of patients with IBS and evaluated whether these were associated with symptoms.We collected fecal and mucosal samples from adult patients who met the Rome III criteria for IBS at a secondary/tertiary care outpatient clinics in Sweden, as well as from healthy subjects. The exploratory set comprised 149 subjects (110 with IBS and 39 healthy subjects); 232 fecal samples and 59 mucosal biopsy samples were collected and analyzed by 16S ribosomal RNA targeted pyrosequencing. The validation set comprised 46 subjects (29 with IBS and 17 healthy subjects); 46 fecal samples, but no mucosal samples, were collected and analyzed. For each subject, we measured exhaled H2 and CH4, oro-anal transit time, and the severity of psychological and gastrointestinal symptoms. Fecal methanogens were measured by quantitative polymerase chain reaction. Numerical ecology analyses and a machine learning procedure were used to analyze the data.Fecal microbiota showed covariation with mucosal adherent microbiota. By using classic approaches, we found no differences in fecal microbiota abundance or composition between patients with IBS vs healthy patients. A machine learning procedure, a computational statistical technique, allowed us to reduce the 16S ribosomal RNA data complexity into a microbial signature for severe IBS, consisting of 90 bacterial operational taxonomic units. We confirmed the robustness of the intestinal microbial signature for severe IBS in the validation set. The signature was able to discriminate between patients with severe symptoms, patients with mild/moderate symptoms, and healthy subjects. By using this intestinal microbiota signature, we found IBS symptom severity to be associated negatively with microbial richness, exhaled CH4, presence of methanogens, and enterotypes enriched with Clostridiales or Prevotella species. This microbiota signature could not be explained by differences in diet or use of medications.In analyzing fecal and mucosal microbiota from patients with IBS and healthy individuals, we identified an intestinal microbiota profile that is associated with the severity of IBS symptoms.NCT01252550.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助咚咚采纳,获得10
2秒前
ruru发布了新的文献求助10
2秒前
3秒前
ontheway发布了新的文献求助10
3秒前
yo完成签到 ,获得积分10
4秒前
顾末完成签到,获得积分10
6秒前
Alice0210完成签到,获得积分10
8秒前
852应助666采纳,获得10
8秒前
jingsihan发布了新的文献求助10
9秒前
nick完成签到,获得积分10
9秒前
薛武发布了新的文献求助10
9秒前
aafrr完成签到 ,获得积分10
10秒前
yun关闭了yun文献求助
10秒前
芊瑶完成签到,获得积分10
10秒前
顾矜应助Iaint采纳,获得30
11秒前
13秒前
大模型应助熙慕采纳,获得10
13秒前
geopotter完成签到 ,获得积分10
13秒前
13秒前
coolcy完成签到,获得积分10
14秒前
14秒前
乐乐应助stk采纳,获得10
15秒前
情怀应助0_08采纳,获得10
15秒前
隐形曼青应助薛武采纳,获得10
16秒前
所所应助薛武采纳,获得10
16秒前
CodeCraft应助ontheway采纳,获得10
16秒前
华仔应助ontheway采纳,获得10
16秒前
17秒前
xwc发布了新的文献求助10
17秒前
千辞完成签到 ,获得积分10
19秒前
共享精神应助Lucy采纳,获得10
19秒前
19秒前
19秒前
20秒前
猛虎发布了新的文献求助10
20秒前
无欲无求发布了新的文献求助30
20秒前
21秒前
22秒前
无花果应助研友_ZbMNPn采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643824
求助须知:如何正确求助?哪些是违规求助? 4762069
关于积分的说明 15022410
捐赠科研通 4802071
什么是DOI,文献DOI怎么找? 2567294
邀请新用户注册赠送积分活动 1524947
关于科研通互助平台的介绍 1484470