Performance of ROMA based on Architect CA 125 II and HE4 values in Chinese women presenting with a pelvic mass: A multicenter prospective study

医学 恶性肿瘤 癌抗原 前瞻性队列研究 绝经后妇女 卵巢癌 妇科 癌症 内科学 胃肠病学 产科
作者
Fengxian Shen,Shiming Lü,Yibing Peng,Fan Yang,Yan Chen,Yingying Lin,Chen Yang,Li Wu,Huijun Li,Yijie Zheng
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:471: 119-125 被引量:13
标识
DOI:10.1016/j.cca.2017.05.029
摘要

We evaluated the performance of human epididymis protein 4 (HE4), cancer antigen 125(CA 125) and Risk of Ovarian Malignancy Algorithm (ROMA) in distinguishing between benign and malignant pelvic masses in Chinese women. From April to December 2012, women with a pelvic mass scheduled to have surgery were enrolled in a prospective, multi-center study conducted in 5 different regions in China. Preoperative serum concentrations of HE4 and CA 125 were examined and ROMA was calculated. A total of 684 women with a pelvic mass were included, of which 482 were diagnosed with benign conditions and 202 were diagnosed with malignant ovarian tumors. At cutoffs of 7.4% and 25.3% for ROMA, the sensitivities and specificities were 85.6% and 81.7% for all patients, 85.7% and 81.5% for premenopausal women, and 85.6% and 83.9% for postmenopausal women, respectively. The ROC-AUC of ROMA was significantly better than that of HE4 (P = 0.0003) or CA 125 (P < 0.0001) for all malignant diseases (including EOC, Non-EOC, LMP, metastases and other pelvic malignancy with no involvement of the ovaries) compared with benign diseases for all patients. We demonstrated the efficiency of ROMA in the distinction of ovarian cancers from benign disease in a multiple-regions Chinese population, especially in premenopausal women.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岩伴完成签到,获得积分10
刚刚
小强x完成签到,获得积分10
刚刚
_hhhjhhh完成签到,获得积分10
1秒前
Laura完成签到 ,获得积分10
1秒前
科研通AI6应助WenyHe采纳,获得10
1秒前
马明旋完成签到,获得积分10
1秒前
司空天磊完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
tangyuan发布了新的文献求助10
3秒前
wanna完成签到,获得积分10
3秒前
青阳完成签到,获得积分10
3秒前
儒雅的巧曼完成签到,获得积分10
3秒前
斯文败类应助紫菜采纳,获得10
4秒前
殷勤的问玉完成签到,获得积分10
4秒前
4秒前
科目三应助雪山飞龙采纳,获得30
5秒前
昵称完成签到,获得积分10
5秒前
391X小king发布了新的文献求助10
5秒前
文静谷秋完成签到,获得积分10
5秒前
5秒前
罗斯ROSE完成签到 ,获得积分10
5秒前
AAA建材王哥完成签到,获得积分10
5秒前
田様应助zhang采纳,获得10
6秒前
英勇凝旋完成签到,获得积分10
6秒前
彩色的过客完成签到,获得积分10
6秒前
永不言弃完成签到,获得积分0
6秒前
大力的洪纲完成签到,获得积分10
6秒前
6秒前
slm完成签到,获得积分10
6秒前
武科大完成签到,获得积分10
7秒前
zgrmws应助Hi采纳,获得20
7秒前
SS完成签到,获得积分10
7秒前
丘比特应助蓦回采纳,获得10
7秒前
Miao完成签到,获得积分10
7秒前
8秒前
可爱的豆芽完成签到,获得积分10
8秒前
明亮悒发布了新的文献求助10
8秒前
QQ不需要昵称完成签到,获得积分10
8秒前
成永福完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645317
求助须知:如何正确求助?哪些是违规求助? 4768461
关于积分的说明 15028063
捐赠科研通 4803918
什么是DOI,文献DOI怎么找? 2568536
邀请新用户注册赠送积分活动 1525881
关于科研通互助平台的介绍 1485508