随机微分方程
分段
数学
应用数学
高斯过程
最大后验估计
高斯分布
奥恩斯坦-乌伦贝克过程
数学优化
非参数回归
期望最大化算法
随机逼近
扩散过程
非参数统计
随机过程
计算机科学
数学分析
统计
最大似然
物理
量子力学
钥匙(锁)
知识管理
计算机安全
创新扩散
作者
Philipp Batz,Andreas Ruttor,Manfred Opper
出处
期刊:Physical review
日期:2018-08-08
卷期号:98 (2)
被引量:35
标识
DOI:10.1103/physreve.98.022109
摘要
We introduce a nonparametric approach for estimating drift and diffusion functions in systems of stochastic differential equations from observations of the state vector. Gaussian processes are used as flexible models for these functions, and estimates are calculated directly from dense data sets using Gaussian process regression. We develop an approximate expectation maximization algorithm to deal with the unobserved, latent dynamics between sparse observations. The posterior over states is approximated by a piecewise linearized process of the Ornstein-Uhlenbeck type and the maximum a posteriori estimation of the drift is facilitated by a sparse Gaussian process approximation.
科研通智能强力驱动
Strongly Powered by AbleSci AI