CORAL Software: Analysis of Impacts of Pharmaceutical Agents Upon Metabolism via the Optimal Descriptors

数量结构-活动关系 珊瑚 软件 计算机科学 计算生物学 生物 生态学 机器学习 程序设计语言
作者
Alla P. Toropova,Ivan Raška,Alla P. Toporova,Mária Rašková
出处
期刊:Current Drug Metabolism [Bentham Science]
卷期号:18 (6) 被引量:11
标识
DOI:10.2174/1389200218666170301105916
摘要

The CORAL software has been developed as a tool to build up quantitative structure- activity relationships (QSAR) for various endpoints.The task of the present work was to estimate and to compare QSAR models for biochemical activity of various therapeutic agents, which are built up by the CORAL software.The Monte Carlo technique gives possibility to build up predictive model of an endpoint by means of selection of so-called correlation weights of various molecular features extracted from simplified molecular input-line entry system (SMILES). Descriptors calculated with these weights are basis for building up correlations "structure - endpoint".Optimal descriptors, which are aimed to predict values of endpoints with apparent influence upon metabolism are crytically compared in aspect of their robustness and heuristic potential. Arguments which are confirming the necessity of reformulation of basics of QSARs are listed: (i) each QSAR model is stochastic experiment. The result of this experiment is defined by distribution into the training set and validation set; (ii) predictive potential of a model should be checked up with a group of different splits; and (iii) only model stochastically stable for a group of splits can be estimated as a reliable tool for the prediction. Examples of the improvement of the models previously suggested are demonstrated.The current version of the CORAL software remains a convenient tool to build up predictive models. The Monte Carlo technique involved for the software confirms the principle "QSAR is a random event" is important paradigm for the QSPR/QSAR analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
jarenthar完成签到 ,获得积分10
1秒前
1秒前
丘比特应助hata采纳,获得10
1秒前
顾矜应助lszhw采纳,获得10
2秒前
lqq完成签到 ,获得积分10
2秒前
2秒前
共享精神应助拟拟采纳,获得10
2秒前
2秒前
lhy12345完成签到,获得积分10
2秒前
非常可爱发布了新的文献求助20
3秒前
3秒前
3秒前
3秒前
科研民工发布了新的文献求助10
4秒前
文艺的初蓝完成签到 ,获得积分10
4秒前
TiAmo发布了新的文献求助10
4秒前
刘十三完成签到,获得积分10
4秒前
4秒前
犹豫忆南完成签到,获得积分10
5秒前
科研通AI5应助kingwhitewing采纳,获得10
6秒前
6秒前
mm关注了科研通微信公众号
6秒前
xieyuanxing发布了新的文献求助10
6秒前
6秒前
左然然完成签到,获得积分10
6秒前
6秒前
人福药业完成签到,获得积分10
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
细腻晓露发布了新的文献求助10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
7秒前
三里墩头应助科研通管家采纳,获得10
7秒前
天线宝宝应助科研通管家采纳,获得10
7秒前
wing00024完成签到,获得积分10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740