生物
重编程
诱导多能干细胞
线粒体分裂
细胞生物学
胚胎干细胞
干细胞
线粒体
细胞效价
生物化学
细胞
基因
作者
Lihua Wang,Tong Zhang,Lin Wang,Yongping Cai,Xiuying Zhong,Xiaoping He,Lan Hu,Shengya Tian,Mian Wu,Lijian Hui,Huafeng Zhang,Ping Gao
标识
DOI:10.15252/embj.201695417
摘要
Abstract Pluripotent stem cells are known to display distinct metabolic phenotypes than their somatic counterparts. While accumulating studies are focused on the roles of glucose and amino acid metabolism in facilitating pluripotency, little is known regarding the role of lipid metabolism in regulation of stem cell activities. Here, we show that fatty acid ( FA ) synthesis activation is critical for stem cell pluripotency. Our initial observations demonstrated enhanced lipogenesis in pluripotent cells and during cellular reprogramming. Further analysis indicated that de novo FA synthesis controls cellular reprogramming and embryonic stem cell pluripotency through mitochondrial fission. Mechanistically, we found that de novo FA synthesis regulated by the lipogenic enzyme ACC 1 leads to the enhanced mitochondrial fission via (i) consumption of AcCoA which affects acetylation‐mediated FIS 1 ubiquitin–proteasome degradation and (ii) generation of lipid products that drive the mitochondrial dynamic equilibrium toward fission. Moreover, we demonstrated that the effect of Acc1 on cellular reprogramming via mitochondrial fission also exists in human iPSC induction. In summary, our study reveals a critical involvement of the FA synthesis pathway in promoting ESC pluripotency and iPSC formation via regulating mitochondrial fission.
科研通智能强力驱动
Strongly Powered by AbleSci AI