An artificial intelligence platform for the multihospital collaborative management of congenital cataracts

医学诊断 背景(考古学) 人工智能 计算机科学 疾病 医学 白内障 卷积神经网络 医学物理学 病理 眼科 生物 古生物学
作者
Erping Long,Haotian Lin,Zhenzhen Liu,Xiaohang Wu,Liming Wang,Jiewei Jiang,Yingying An,Zhuoling Lin,Xiaoyan Li,Jingjing Chen,Jing Li,Qianzhong Cao,Dongni Wang,Xiyang Liu,Weirong Chen,Yizhi Liu
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:1 (2) 被引量:318
标识
DOI:10.1038/s41551-016-0024
摘要

Using artificial intelligence (AI) to prevent and treat diseases is an ultimate goal in computational medicine. Although AI has been developed for screening and assisted decision-making in disease prevention and management, it has not yet been validated for systematic application in the clinic. In the context of rare diseases, the main strategy has been to build specialized care centres; however, these centres are scattered and their coverage is insufficient, which leaves a large proportion of rare-disease patients with inadequate care. Here, we show that an AI agent using deep learning, and involving convolutional neural networks for diagnostics, risk stratification and treatment suggestions, accurately diagnoses and provides treatment decisions for congenital cataracts in an in silico test, in a website-based study, in a ‘finding a needle in a haystack’ test and in a multihospital clinical trial. We also show that the AI agent and individual ophthalmologists perform equally well. Moreover, we have integrated the AI agent with a cloud-based platform for multihospital collaboration, designed to improve disease management for the benefit of patients with rare diseases. An artificial intelligence agent integrated with a cloud-based platform for multihospital collaboration performs equally as well as ophthalmologists in the diagnosis of congenital cataracts in a series of online tests and a multihospital clinical trial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nEoEy8发布了新的文献求助10
1秒前
yn发布了新的文献求助10
1秒前
快乐太英完成签到 ,获得积分10
1秒前
暗中观察完成签到,获得积分10
3秒前
小章鱼发布了新的文献求助10
4秒前
021发布了新的文献求助10
4秒前
蒋时晏应助ximei采纳,获得30
4秒前
一与余完成签到,获得积分10
5秒前
8秒前
qiahao完成签到,获得积分20
9秒前
无花果应助021采纳,获得30
11秒前
科研通AI2S应助021采纳,获得10
11秒前
英俊的铭应助021采纳,获得10
11秒前
可爱的函函应助021采纳,获得10
11秒前
gmjinfeng完成签到,获得积分0
11秒前
迅速荠发布了新的文献求助10
12秒前
bhfhq完成签到,获得积分10
14秒前
student完成签到 ,获得积分10
14秒前
16秒前
17秒前
20秒前
冬瓜完成签到 ,获得积分10
22秒前
TE发布了新的文献求助10
24秒前
英姑应助科研糊涂神采纳,获得10
25秒前
顾矜应助郷禦采纳,获得10
26秒前
田雨完成签到 ,获得积分0
26秒前
俏皮诺言完成签到,获得积分10
27秒前
迅速荠完成签到,获得积分10
28秒前
29秒前
cc完成签到,获得积分10
31秒前
情怀应助好运莲莲采纳,获得10
32秒前
思源应助exquisite采纳,获得10
32秒前
飞龙在天发布了新的文献求助10
33秒前
lym97完成签到 ,获得积分10
34秒前
华仔应助TE采纳,获得10
35秒前
36秒前
科研通AI2S应助Tristan采纳,获得10
36秒前
搜集达人应助021采纳,获得50
37秒前
郷禦发布了新的文献求助10
39秒前
40秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339611
求助须知:如何正确求助?哪些是违规求助? 2967543
关于积分的说明 8630284
捐赠科研通 2647087
什么是DOI,文献DOI怎么找? 1449480
科研通“疑难数据库(出版商)”最低求助积分说明 671418
邀请新用户注册赠送积分活动 660337