最佳停车
序列(生物学)
停车时间
数学
组合数学
理论(学习稳定性)
可选停止定理
停止规则
简单(哲学)
离散数学
马尔可夫过程
空格(标点符号)
应用数学
数学优化
计算机科学
统计
化学
认识论
操作系统
机器学习
哲学
生物化学
作者
Evgueni Gordienko,Andrey Novikov
标识
DOI:10.1017/s0269964814000035
摘要
We consider an optimal stopping problem for a general discrete-time process X 1 , X 2 , …, X n , … on a common measurable space. Stopping at time n ( n = 1, 2, …) yields a reward R n ( X 1 , …, X n ) ≥ 0, while if we do not stop, we pay c n ( X 1 , …, X n ) ≥ 0 and keep observing the process. The problem is to characterize all the optimal stopping times τ, i.e., such that maximize the mean net gain: $$E(R_\tau(X_1,\dots,X_\tau)-\sum_{n=1}^{\tau-1}c_n(X_1,\dots,X_n)).$$ We propose a new simple approach to stopping problems which allows to obtain not only sufficient, but also necessary conditions of optimality in some natural classes of (randomized) stopping rules. In the particular case of Markov sequence X 1 , X 2 , … we estimate the stability of the optimal stopping problem under perturbations of transition probabilities.
科研通智能强力驱动
Strongly Powered by AbleSci AI