统一的划分
有限元法
稳健性(进化)
多边形网格
扩展有限元法
分拆(数论)
结构工程
流离失所(心理学)
计算机科学
数学
应用数学
几何学
工程类
基因
生物化学
组合数学
心理学
化学
心理治疗师
作者
Nicolas Moës,John E. Dolbow,Ted Belytschko
标识
DOI:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j
摘要
An improvement of a new technique for modelling cracks in the finite element framework is presented. A standard displacement-based approximation is enriched near a crack by incorporating both discontinuous fields and the near tip asymptotic fields through a partition of unity method. A methodology that constructs the enriched approximation from the interaction of the crack geometry with the mesh is developed. This technique allows the entire crack to be represented independently of the mesh, and so remeshing is not necessary to model crack growth. Numerical experiments are provided to demonstrate the utility and robustness of the proposed technique. Copyright © 1999 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI