亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A metabolomic approach to lung cancer

肺癌 医学 代谢组学 腺癌 阶段(地层学) 癌症 病理 代谢物 内科学 肿瘤科 肾细胞癌 生物信息学 生物 古生物学
作者
Suya Hori,Shin Nishiumi,Kazuyuki Kobayashi,Masakazu Shinohara,Yukihisa Hatakeyama,Yoshikazu Kotani,Naoya Hatano,Yoshimasa Maniwa,Wataru Nishio,Takeshi Bamba,Eiichiro Fukusaki,Takeshi Azuma,Tadaomi Takenawa,Yoshihiro Nishimura,Masaru Yoshida
出处
期刊:Lung Cancer [Elsevier]
卷期号:74 (2): 284-292 被引量:155
标识
DOI:10.1016/j.lungcan.2011.02.008
摘要

Lung cancer is one of the most common cancers in the world, but no good clinical markers that can be used to diagnose the disease at an early stage and predict its prognosis have been found. Therefore, the discovery of novel clinical markers is required. In this study, metabolomic analysis of lung cancer patients was performed using gas chromatography mass spectrometry. Serum samples from 29 healthy volunteers and 33 lung cancer patients with adenocarcinoma (n=12), squamous cell carcinoma (n=11), or small cell carcinoma (n=10) ranging from stage I to stage IV disease and lung tissue samples from 7 lung cancer patients including the tumor tissue and its surrounding normal tissue were used. A total of 58 metabolites (57 individual metabolites) were detected in serum, and 71 metabolites were detected in the lung tissue. The levels of 23 of the 58 serum metabolites were significantly changed in all lung cancer patients compared with healthy volunteers, and the levels of 48 of the 71 metabolites were significantly changed in the tumor tissue compared with the non-tumor tissue. Partial least squares discriminant analysis, which is a form of multiple classification analysis, was performed using the serum sample data, and metabolites that had characteristic alterations in each histological subtype and disease stage were determined. Our results demonstrate that changes in metabolite pattern are useful for assessing the clinical characteristics of lung cancer. Our results will hopefully lead to the establishment of novel diagnostic tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月军完成签到,获得积分10
22秒前
tujamo完成签到,获得积分10
1分钟前
今后应助科研通管家采纳,获得50
2分钟前
2分钟前
3分钟前
红豆面包发布了新的文献求助10
3分钟前
晓风拂楠完成签到,获得积分10
4分钟前
丘比特应助科研通管家采纳,获得10
4分钟前
4分钟前
高兴冬灵完成签到,获得积分10
4分钟前
5分钟前
Shulin完成签到,获得积分10
5分钟前
Shulin发布了新的文献求助10
5分钟前
6分钟前
wtsow完成签到,获得积分0
6分钟前
乐乐应助feiying采纳,获得10
6分钟前
OliverC完成签到,获得积分10
7分钟前
8分钟前
笨笨若魔发布了新的文献求助30
9分钟前
Vincy完成签到,获得积分10
9分钟前
11分钟前
feiying发布了新的文献求助10
11分钟前
feiying完成签到,获得积分10
11分钟前
11分钟前
apollo3232完成签到,获得积分10
12分钟前
科研通AI2S应助美味肉蟹煲采纳,获得10
13分钟前
牛八先生完成签到,获得积分10
13分钟前
13分钟前
脑洞疼应助风趣的忆南采纳,获得10
15分钟前
史前巨怪完成签到,获得积分10
15分钟前
李爱国应助风趣的忆南采纳,获得10
15分钟前
kbcbwb2002完成签到,获得积分10
16分钟前
al完成签到 ,获得积分10
16分钟前
17分钟前
滚雪球发布了新的文献求助10
17分钟前
19分钟前
百草发布了新的文献求助10
19分钟前
19分钟前
hesurina发布了新的文献求助30
19分钟前
糊涂的青烟完成签到 ,获得积分10
19分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 800
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211182
求助须知:如何正确求助?哪些是违规求助? 2860139
关于积分的说明 8122745
捐赠科研通 2525904
什么是DOI,文献DOI怎么找? 1359682
科研通“疑难数据库(出版商)”最低求助积分说明 643039
邀请新用户注册赠送积分活动 615012