An efficient approach for numerical treatment of some inequalities in solid mechanics on examples of Kuhn-Tucker and Signorini-Fichera conditions

数学 有限元法 数学分析 变分不等式 数值分析 边值问题 固体力学
作者
Vitaliy M. Kindrachuk,Boris A. Galanov
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier BV]
卷期号:63: 432-450 被引量:9
标识
DOI:10.1016/j.jmps.2013.08.008
摘要

Abstract A computationally efficient solution scheme is presented for the mechanical problems whose formulations include the Kuhn–Tucker or Signorini–Fichera conditions. It is proposed to reformulate these problems replacing inequalities in these conditions by equations with respect to new unknowns. The solutions of the modified problems have simple physical meanings and determine uniquely the unknowns of the original problems. The approach avoids application of multi-valued operators (inclusions or inequalities) in formulation of the problems. Hence, the modified formulations are suitable for numerical analysis using established powerful mathematical methods and corresponding solvers developed for solving systems of non-linear equations. To demonstrate the advantages of the proposed approach, it is applied for solving problems in two different areas: constitutive modeling of single-crystal plasticity and mixed boundary value problems of elastic contact mechanics with free boundaries. The original formulations of these problems contain respectively the Kuhn–Tucker and Signorini–Fichera conditions. A problem of the former area is integrated using an implicit integration scheme based on the return-mapping algorithm. The derived integration scheme is free of any update procedure for identification of active slip systems. A problem of the latter area is reduced to solution of non-linear integral boundary equations (NBIEs). Numerical examples demonstrate stability and efficiency of the solution procedures and reflect the mathematical similarities between the both non-linear problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_想想发布了新的文献求助10
1秒前
1秒前
2秒前
陈子豪发布了新的文献求助10
2秒前
Orange应助小鱼采纳,获得10
2秒前
科研通AI5应助yuminger采纳,获得10
2秒前
加了醋的豆浆完成签到,获得积分10
3秒前
23完成签到,获得积分10
3秒前
soso发布了新的文献求助10
3秒前
叮叮叮发布了新的文献求助10
3秒前
3秒前
lll完成签到,获得积分10
4秒前
4秒前
嘻嘻完成签到,获得积分10
5秒前
科研通AI2S应助cq采纳,获得10
5秒前
满意的念柏完成签到 ,获得积分10
5秒前
6秒前
改改发布了新的文献求助20
7秒前
充电宝应助熊二采纳,获得10
7秒前
噗噗发布了新的文献求助10
7秒前
lll发布了新的文献求助10
7秒前
大个应助Kakaluote采纳,获得10
8秒前
美子完成签到,获得积分10
8秒前
今晚打老虎完成签到,获得积分10
9秒前
魔幻若血发布了新的文献求助30
9秒前
10秒前
乐乐应助泥嚎芽采纳,获得10
10秒前
10秒前
10秒前
猪猪完成签到,获得积分10
10秒前
11秒前
11秒前
小风完成签到,获得积分10
11秒前
斯文败类应助刘小孩采纳,获得10
11秒前
跳跃靖发布了新的文献求助10
11秒前
倪小完成签到 ,获得积分10
11秒前
77发布了新的文献求助10
12秒前
huangwenjin完成签到,获得积分10
12秒前
弄香完成签到,获得积分10
12秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744291
求助须知:如何正确求助?哪些是违规求助? 3287068
关于积分的说明 10052458
捐赠科研通 3003213
什么是DOI,文献DOI怎么找? 1648976
邀请新用户注册赠送积分活动 784875
科研通“疑难数据库(出版商)”最低求助积分说明 750879