光电子学
硅光子学
材料科学
带宽(计算)
谐振器
CMOS芯片
光子学
炸薯条
波分复用
波长
计算机科学
电信
作者
Jacob S. Levy,Alexander Gondarenko,Mark A. Foster,Amy C. Turner-Foster,Alexander L. Gaeta,Michal Lipson
出处
期刊:Nature Photonics
[Springer Nature]
日期:2009-12-20
卷期号:4 (1): 37-40
被引量:1073
标识
DOI:10.1038/nphoton.2009.259
摘要
Silicon photonics enables the fabrication of on-chip, ultrahigh-bandwidth optical networks that are critical for the future of microelectronics1,2,3. Several optical components necessary for implementing a wavelength division multiplexing network have been demonstrated in silicon. However, a fully integrated multiple-wavelength source capable of driving such a network has not yet been realized. Optical amplification, a necessary component for lasing, has been achieved on-chip through stimulated Raman scattering4,5, parametric mixing6 and by silicon nanocrystals7 or nanopatterned silicon8. Losses in most of these structures have prevented oscillation. Raman oscillators have been demonstrated9,10,11, but with a narrow gain bandwidth that is insufficient for wavelength division multiplexing. Here, we demonstrate the first monolithically integrated CMOS-compatible source by creating an optical parametric oscillator formed by a silicon nitride ring resonator on silicon. The device can generate more than 100 new wavelengths with operating powers below 50 mW. This source can form the backbone of a high-bandwidth optical network on a microelectronic chip. A monolithically integrated CMOS-compatible source is demonstrated using an optical parametric oscillator based on a silicon nitride ring resonator on silicon. Generating more than 100 wavelengths simultaneously and operating at powers below 50 mW, scientists say that it may form the basis of an on-chip high-bandwidth optical network.
科研通智能强力驱动
Strongly Powered by AbleSci AI