安定
压舱物
破损
材料科学
变形(气象学)
降级(电信)
循环应力
航程(航空)
岩土工程
土工格栅
可塑性
结构工程
复合材料
地质学
有限元法
工程类
电气工程
钢筋
作者
Qideng Sun,Buddhima Indraratna,Sanjay Nimbalkar
出处
期刊:Geotechnique
[Thomas Telford Ltd.]
日期:2014-07-01
卷期号:64 (9): 746-751
被引量:121
标识
DOI:10.1680/geot.14.t.015
摘要
A series of large-scale cyclic triaxial tests were conducted on latite basalt aggregates (ballast) to investigate how the frequency f affects the permanent deformation and degradation of railway ballast. During testing the frequency was varied from 5 Hz to 60 Hz to simulate a range of train speeds from about 40 km/h to 400 km/h. Three categories of permanent deformation mechanisms were observed in response to the applied cyclic loads, namely, the inception of plastic shakedown (f ≤ 20 Hz), then plastic shakedown and ratcheting (30 Hz ≤ f ≤ 50 Hz), followed by plastic collapse at higher frequencies (f ≥ 60 Hz). The permanent strain of ballast and particle breakage increased with the frequency and number of load cycles. A cyclic strain ratio was introduced to capture the effect of frequency on the permanent axial and volumetric strains, respectively. An empirical equation was formulated to represent this relationship for latite basalt, and a critical train speed was identified. A good correlation was obtained between particle breakage and volumetric strain under cyclic loading.
科研通智能强力驱动
Strongly Powered by AbleSci AI