Tissue heart valves: Current challenges and future research perspectives

主动脉瓣 钙化 反流(循环) 心脏病学 心脏瓣膜 细胞外基质 内科学 主动脉 医学 细胞生物学 生物
作者
F J Schoen,Robert J. Levy
出处
期刊:Journal of Biomedical Materials Research [Wiley]
卷期号:47 (4): 439-465 被引量:472
标识
DOI:10.1002/(sici)1097-4636(19991215)47:4<439::aid-jbm1>3.0.co;2-o
摘要

Substitute heart valves composed of human or animal tissues have been used since the early 1960s, when aortic valves obtained fresh from human cadavers were transplanted to other individuals as allografts. Today, tissue valves are used in 40% or more of valve replacements worldwide, predominantly as stented porcine aortic valves (PAV) and bovine pericardial valves (BPV) preserved by glutaraldehyde (GLUT) (collectively termed bioprostheses). The principal disadvantage of tissue valves is progressive calcific and noncalcific deterioration, limiting durability. Native heart valves (typified by the aortic valve) are cellular and layered, with regional specializations of the extracellular matrix (ECM). These elements facilitate marked repetitive changes in shape and dimension throughout the cardiac cycle, effective stress transfer to the adjacent aortic wall, and ongoing repair of injury incurred during normal function. Although GLUT bioprostheses mimic natural aortic valve structure (a) their cells are nonviable and thereby incapable of normal turnover or remodeling ECM proteins; (b) their cuspal microstructure is locked into a configuration which is at best characteristic of one phase of the cardiac cycle (usually diastole); and (c) their mechanical properties are markedly different from those of natural aortic valve cusps. Consequently, tissue valves suffer a high rate of progressive and age-dependent structural valve deterioration resulting in stenosis or regurgitation (>50% of PAV overall fail within 10–15 years; the failure rate is nearly 100% in 5 years in those <35 years old but only 10% in 10 years in those >65). Two distinct processes—intrinsic calcification and noncalcific degradation of the ECM—account for structural valve deterioration. Calcification is a direct consequence of the inability of the nonviable cells of the GLUT-preserved tissue to maintain normally low intracellular calcium. Consequently, nucleation of calcium-phosphate crystals occurs at the phospholipid-rich membranes and their remnants. Collagen and elastin also calcify. Tissue valve mineralization has complex host, implant, and mechanical determinants. Noncalcific degradation in the absence of physiological repair mechanisms of the valvular structural matrix is increasingly being appreciated as a critical yet independent mechanism of valve deterioration. These degradation mechanisms are largely rationalized on the basis of the changes to natural valves when they are fabricated into a tissue valve (mentioned above), and the subsequent interactions with the physiologic environment that are induced following implantation. The “Holy Grail” is a nonobstructive, nonthrombogenic tissue valve which will last the lifetime of the patient (and potentially grow in maturing recipients). There is considerable activity in basic research, industrial development, and clinical investigation to improve tissue valves. Particularly exciting in concept, yet early in practice is tissue engineering, a technique in which an anatomically appropriate construct containing cells seeded on a resorbable scaffold is fabricated in vitro, then implanted. Remodeling in vivo, stimulated and guided by appropriate biological signals incorporated into the construct, is intended to recapitulate normal functional architecture. © 1999 John Wiley & Sons, Inc. J Biomed Mater Res, 47, 439–465, 1999.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
刚刚
bkagyin应助misalia采纳,获得10
刚刚
刚刚
暮色完成签到,获得积分10
刚刚
刚刚
nuyoah发布了新的文献求助10
1秒前
2秒前
2秒前
liangshuang发布了新的文献求助10
2秒前
开心的张完成签到,获得积分10
2秒前
Hello应助光亮的冰巧采纳,获得30
3秒前
3秒前
3秒前
我有魔鬼大头应助xiao采纳,获得20
3秒前
我是鸡汤发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助BFQQQQ采纳,获得10
6秒前
孺子牛完成签到,获得积分10
6秒前
???完成签到,获得积分10
7秒前
Cixiii完成签到,获得积分10
7秒前
Lucas应助BBBB小拳头采纳,获得10
7秒前
7秒前
祝科研发布了新的文献求助20
8秒前
9秒前
苏苏完成签到,获得积分10
10秒前
huhu完成签到,获得积分10
11秒前
11秒前
爱听歌蜗牛应助a2271559577采纳,获得10
11秒前
kingwill应助听白采纳,获得20
13秒前
伯赏元彤完成签到,获得积分10
14秒前
n5421发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
科研通AI2S应助阿冰采纳,获得10
16秒前
16秒前
脑洞疼应助感动芷珍采纳,获得10
16秒前
所所应助W乐事儿采纳,获得10
16秒前
nuyoah完成签到,获得积分20
17秒前
Hello应助mt采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553714
求助须知:如何正确求助?哪些是违规求助? 3129536
关于积分的说明 9382934
捐赠科研通 2828669
什么是DOI,文献DOI怎么找? 1555104
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267