Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene

石墨烯 氮化硼 材料科学 纳米技术 纳米片 纳米结构 纳米材料 石墨烯纳米带
作者
Yi Lin,John W. Connell
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:4 (22): 6908-6908 被引量:749
标识
DOI:10.1039/c2nr32201c
摘要

The recent surge in graphene research has stimulated interest in the investigation of various 2-dimensional (2D) nanomaterials. Among these materials, the 2D boron nitride (BN) nanostructures are in a unique position. This is because they are the isoelectric analogs to graphene structures and share very similar structural characteristics and many physical properties except for the large band gap. The main forms of the 2D BN nanostructures include nanosheets (BNNSs), nanoribbons (BNNRs), and nanomeshes (BNNMs). BNNRs are essentially BNNSs with narrow widths in which the edge effects become significant; BNNMs are also variations of BNNSs, which are supported on certain metal substrates where strong interactions and the lattice mismatch between the substrate and the nanosheet result in periodic shallow regions on the nanosheet surface. Recently, the hybrids of 2D BN nanostructures with graphene, in the form of either in-plane hybrids or inter-plane heterolayers, have also drawn much attention. In particular, the BNNS-graphene heterolayer architectures are finding important electronic applications as BNNSs may serve as excellent dielectric substrates or separation layers for graphene electronic devices. In this article, we first discuss the structural basics, spectroscopic signatures, and physical properties of the 2D BN nanostructures. Then, various top-down and bottom-up preparation methodologies are reviewed in detail. Several sections are dedicated to the preparation of BNNRs, BNNMs, and BNNS-graphene hybrids, respectively. Following some more discussions on the applications of these unique materials, the article is concluded with a summary and perspectives of this exciting new field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李小强完成签到,获得积分10
1秒前
Mandy完成签到 ,获得积分10
2秒前
十一完成签到 ,获得积分10
2秒前
珂伟发布了新的文献求助10
3秒前
吉安娜完成签到,获得积分10
5秒前
7秒前
9秒前
微笑的梦柏完成签到,获得积分10
10秒前
11秒前
12秒前
肉肉肉完成签到,获得积分10
13秒前
13秒前
研友_汪老头完成签到,获得积分10
14秒前
北风语完成签到,获得积分10
14秒前
15秒前
15秒前
dengxu发布了新的文献求助10
16秒前
17秒前
17秒前
听雨发布了新的文献求助30
17秒前
俗人完成签到,获得积分10
18秒前
大帅比发布了新的文献求助10
19秒前
卡拉尔德发布了新的文献求助10
20秒前
yatou5651发布了新的文献求助30
20秒前
科研通AI2S应助超级mxl采纳,获得10
20秒前
霸气紫文应助哭泣的采波采纳,获得10
21秒前
22秒前
iVANPENNY应助rea采纳,获得10
22秒前
23秒前
23秒前
子车茗应助55555采纳,获得30
23秒前
Akim应助气泡水采纳,获得10
27秒前
小米完成签到,获得积分20
27秒前
28秒前
罗罗完成签到,获得积分10
28秒前
sam完成签到,获得积分10
30秒前
今后应助xx采纳,获得10
31秒前
拉长的念珍完成签到,获得积分10
32秒前
NexusExplorer应助黎小静采纳,获得10
33秒前
赘婿应助科研通管家采纳,获得10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312284
求助须知:如何正确求助?哪些是违规求助? 2944917
关于积分的说明 8522096
捐赠科研通 2620692
什么是DOI,文献DOI怎么找? 1432995
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650147