摘要
Journal of PhytopathologyVolume 99, Issue 3 p. 251-272 Phytoalexins – a Biogenetic Perspective1)2) Albert Stoessl, Corresponding Author Albert Stoessl Canada Department of Agriculture, Research Institute, London, Ontario, CanadaAuthor's addresses: Agriculture Canada, Research Institute, University Sub Post Office, London, Ontario N6A 5B7 (Canada).Search for more papers by this author Albert Stoessl, Corresponding Author Albert Stoessl Canada Department of Agriculture, Research Institute, London, Ontario, CanadaAuthor's addresses: Agriculture Canada, Research Institute, University Sub Post Office, London, Ontario N6A 5B7 (Canada).Search for more papers by this author First published: November 1980 https://doi.org/10.1111/j.1439-0434.1980.tb03786.xCitations: 30 With 9 figures ) Based in part on a lecture at the Third International Congress of Plant Pathology, Munich, August 1978. The literature was surveyed to August 1979. ) Contribution No. 819 from the Research Institute. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Literature Allen, E. H., and C. A. Thomas, 1972: Relationship of safynol and dehydrosafynol accumulation to Phytophthora resistance in safflower. Phytopathology 62, 471–474. 10.1094/Phyto-62-471 CASWeb of Science®Google Scholar Alves, L. M., E. G. Heisler, J. C. Kissinger, J. M. Patterson, and E. B. Kalan, 1979: Effects of controlled atmospheres on production of sesquiterpenoid stress metabolites by white potato tubers. Possible involvement of cyanide-resistant respiration. Plant Physiol. 63, 359–362. CASWeb of Science®Google Scholar Archer, S. A., and E. C. Hislop, 1975: Ethylene in host-pathogen relationships. Ann. Appl. Biol. 81, 121–126. 10.1111/j.1744-7348.1975.tb00525.x Web of Science®Google Scholar Avakhodzhaev, M. K., S. Sh. Zeľtser, and A. N. Adylova, 1977: Induction of phytoalexins in cotton plants by metabolites of the fungus Verticillium dahliae Kleb. Chem. Abstr. 87, 50231. Google Scholar Bailey, J. A., 1973: Production of antifungal compounds in cowpea Vigna sinensis and pea Pisum sativum after virus infection. J. Gen. Microbiol. 75, 119–123. 10.1099/00221287-75-1-119 CASPubMedWeb of Science®Google Scholar Bailey, J. A., and R. S. Burden, 1973: Biochemical changes and phytoalexin accumulation in Phaseolus vulgaris following cellular browing caused by tobacco necrosis virus. Physiol. Plant Path. 3, 171–177. 10.1016/0048-4059(73)90079-9 CASWeb of Science®Google Scholar Bailey, J. A., G. G. Vincent, and R. S. Burden, 1976: The antifungal activity of glutinosone and capsidiol and their accumulation in virus-infected tobacco species. Physiol. Plant Path. 8, 35–41. 10.1016/0048-4059(76)90005-9 CASWeb of Science®Google Scholar Baker, F. C., and C. J. W. Brooks, 1976: Biosynthesis of the sesquiterpenoid, capsidiol, in sweet pepper fruits inoculated with fungal spores. Phytochemistry 15, 689–694. 10.1016/S0031-9422(00)94422-4 CASWeb of Science®Google Scholar Bell, A. A., and R. D. Stipanovic, 1979: Biochemistry of disease and pest resistance in cotton. Mycopathologica 65, 91–106. 10.1007/BF00447180 CASWeb of Science®Google Scholar Berenbaum, M., 1978: Toxicity of a furanocoumarin to army-worms: a case of biosynthetic escape from insect herbivores. Science 210, 532–534. 10.1126/science.201.4355.532 Web of Science®Google Scholar Billek, G., 1964: Stilbene im Pflanzenreich. Fortschr. Chem. Org. Naturstoffe 22, 115–152. CASWeb of Science®Google Scholar Birnbaum, G. I., C. P. Huber, M. L. Post, J. B. Stothers, J. R. Robinson, A. Stoessl, and E. W. B. Ward, 1976: Sesquiterpenoid stress compounds of Datura stramonium: Biosynthesis of the three major metabolites of [1,2-13C] acetate and the X-ray structure of 3-hydroxylubimin. J. Chem. Soc. Chem. Comm., 330–331. 10.1039/c39760000330 CASWeb of Science®Google Scholar Brown, S. A., 1970: Biosynthesis of furocoumarins in parsnips. Phytochemistry 9, 2471–2475. 10.1016/S0031-9422(00)85765-9 CASWeb of Science®Google Scholar Cain, R. O., and A. E. A. Porter, 1979: Biosynthesis of the phytoalexin wyerone in Vicia faba. Phytochemistr. 18, 322–323. 10.1016/0031-9422(79)80082-5 CASWeb of Science®Google Scholar Cartwright, D., P. Langcake, R. J. Pryce, D. P. Leworthy, and J. P. Ride, 1977: Chemical activation of host defence mechanisms as a basis for crop protection. Nature (London) 267, 511–513. 10.1038/267511a0 CASWeb of Science®Google Scholar Chalova, L. I., V. G. Baramidze, L. A. Yurganova, Yu. T. D'Yakov, O. L. Ozeretskovskaya, and L. V. Metlitzkii, 1977: Isolation and characteristics of the potato protective reaction inductor from cytoplasmic contents of the Phytophthora infection pathogen. Chem. Abstr. 87, 164094. Google Scholar Chalutz, E., J. E. Devay, and E. C. Maxie, 1969: Ethylene-induced isocoumarin formation in carrot root tissue. Plant Physiol. 44, 235–241. 10.1104/pp.44.2.235 CASPubMedWeb of Science®Google Scholar Clarke, D. D., 1973: The accumulation of scopolin in potato tissue in response to infection. Physiol. Plant Path. 3, 347–358. 10.1016/0048-4059(73)90006-4 CASWeb of Science®Google Scholar Clarke, D. D., and P. S. Baines, 1976: Host control of scopolin accumulation in infected potato tissue. Physiol. Plant Path. 9, 199–203. 10.1016/0048-4059(76)90040-0 CASWeb of Science®Google Scholar Cline, K., M. Wade, and P. Albersheim, 1978: Host-pathogen interactions. XV. Fungal glucans which elicit phytoalexin accumulation in soybean also elicit the accumulation of phytoalexins in other plants. Plant Physiol. 62, 918–921. 10.1104/pp.62.6.918 CASPubMedWeb of Science®Google Scholar Crombie, L., and W. M. L. Crombie, 1978: Dihydrostilbenes of Thailand Cannabis. Tetrahedron Lett., 4711–4714. 10.1016/S0040-4039(01)85712-9 CASWeb of Science®Google Scholar Cruickshank, I. A. M., 1963: Phytoalexins. Ann. Rev. Phytopath. 1, 351–374. 10.1146/annurev.py.01.090163.002031 CASGoogle Scholar Cruickshank, I. A. M., and D. R. Perrin, 1968: The isolation and partial characterization of monilicolin A, a polypeptide with phaseollin-inducing activity from Monilinia fructicola. Life Sci. 7 II 449–458. 10.1016/0024-3205(68)90061-1 CASPubMedGoogle Scholar Devon, T. K., and A. I. Scott, 1972: Handbook of Naturally Occurring Compounds, Vol. II. Terpenes, 576 p. Academic Press, New York and London . Google Scholar Dewick, P. M., 1975: Pterocarpan biosynthesis: chalcone and isoflavone precursors of demethylhomopterocarpin and maackiain in Trifolium pratense. Phytochemistr. 14, 979–982. 10.1016/0031-9422(75)85171-5 CASWeb of Science®Google Scholar Dewick, P. M., 1977: Biosynthesis of pterocarpan phytoalexins in Trifolium pratense. Phytochemistr. 16, 93–97. 10.1016/0031-9422(77)83020-3 CASWeb of Science®Google Scholar Dewick, P. M., and M. Martin, 1979a: Biosynthesis of pterocarpans and isoflavan phytoalexins in Medicago sativa: The biochemical interconversion of pterocarpans and 2′-hydroxyisoflavans. Phytochemistry 18, 591–596. 10.1016/S0031-9422(00)84266-1 CASWeb of Science®Google Scholar Dewick, P. M., and M. Martin, 1979b: Biosynthesis of pterocarpans, isoflavan and coumestan metabolites of Medicago sativa: chalcone, isoflavone and isoflavanone precursors. Phytochemistry 18, 597–602. 10.1016/S0031-9422(00)84267-3 CASWeb of Science®Google Scholar Dixon, R. A., and K. W. Fuller, 1976: Effects of synthetic auxin levels on phaseollin production and phenylammonia-lyase (PAL) activity in tissue cultures of Phaseolus vulgaris L. Physiol. Plant Path. 9, 299–312. 10.1016/0048-4059(76)90063-1 CASWeb of Science®Google Scholar Dueber, M. T., W. Adolf, and C. A. West, 1978: Biosynthesis of the diterpene phytoalexin casbene. Partial purification and characterization of casbene synthetase from Ricinis communis. Plant Physiol. 62, 598–603. 10.1104/pp.62.4.598 CASPubMedWeb of Science®Google Scholar Fawcett, C. H., and D. M. Spencer, 1969a: Natural antifungal compounds. In: D. C. Torgeson, Ed., Fungicides, Vol. II 742 p., 637–669. Academic Press, New York and London . Google Scholar Fawcett, C. H., and D. M. Spencer, 1969b: Phytoalexin production and brown rot in apples. Phytochemistry 8, 6. Web of Science®Google Scholar Fisch, M. H., B. H. Flick, and J. Arditti, 1973: Structure and antifungal activity of hircinol, loroglossol and orchinol. Phytochemistry 12, 437–441. 10.1016/0031-9422(73)80036-6 CASWeb of Science®Google Scholar Frank, J. A., and J. D. Paxton, 1971: An inducer of soybean phytoalexin and its role in the resistance of soybeans to Phytophthora rot. Phytopathology 61, 954–958. 10.1094/Phyto-61-954 CASWeb of Science®Google Scholar Fritig, B., L. Hirth, and G. Ourisson, 1972: Biosynthesis of phenolic compounds in healthy and diseased tobacco plants and tissue cultures. Hoppe-Seyler Z. Physiol. Chem. 353, 134–135. CASPubMedWeb of Science®Google Scholar Gäumann, E., und H. Kern, 1959: Über chemische Abwehrreaktionen bei Orchideen. Phytopath. Z. 36, 1–26. 10.1111/j.1439-0434.1959.tb01842.x Google Scholar Gnanamanickam, S. S., and S. S. Patil, 1977: Accumulation of antibacterial isoflavonoids in hypersensitively responding bean leaf tissues inoculated with Pseudomonas phaseolicola. Physiol. Plant Path. 10, 159–168. 10.1016/0048-4059(77)90019-4 CASWeb of Science®Google Scholar Goodliffe, J. P., and J. B. Heale, 1978: The role of 6-methoxy mellein in the resistance and susceptibility of carrot root tissue to the cold-storage pathogen Botrytis cinerea. Physiol. Plant Path. 12, 27–43. 10.1016/0048-4059(78)90016-4 CASWeb of Science®Google Scholar Gross, D., 1975: Growth regulating substances of plant origin. Phytochemistry 14, 2105–2112. 10.1016/S0031-9422(00)91080-X CASWeb of Science®Google Scholar Gunning, P. J. M., P. J. Kavanagh, M. J. Meegan, and D. M. X. Donnelly, 1977: Reactions of 6a,11a-dihydra-6H-benzofuro[3,2-c]-benzopyran. J. Chem. Soc. Perkin I, 691–694. 10.1039/p19770000691 Web of Science®Google Scholar Haard, N. F., 1977: Potentiation of wound-induced formation of ipomeamarone by cyanide insensitive respiration in sweet potato Ipomoea batatas root slices. Z. Pflanzenphysiol. 81, 364–368. 10.1016/S0044-328X(77)80104-9 CASWeb of Science®Google Scholar Hadwiger, L. A., A. Jafri, S. von Broembsen, and R. Eddy, 1974: Mode of pisatin induction. Increased template activity and dye-binding capacity of chromatin isolated from polypeptide-treated pea pods. Plant Physiol. 53, 52–63. 10.1104/pp.53.1.52 CASPubMedWeb of Science®Google Scholar Hahlbrock, K., and Grisebach, 1975: Biosynthesis of flavonoids. In: J. B. Harborne, T. J. Mabry, H. Mabry, Eds., The Flavonoids 1204 p., 866–915. Chapman and Hall, London . Google Scholar Hammerschlag, F., and W. L. Klarman, 1969: An antifungal principle produced by soybean plants inoculated with tobacco necrosis virus. Phytopathology 59, 1557. Web of Science®Google Scholar Harborne, J. B., 1977: Phenolic compounds derived from shikimate. Spec. Period. Rep. Biosynth. 5, 34–55. CASGoogle Scholar Harding, V., and J. B. Heale, 1978: Post-formed inhibitors in carrot root tissue treated with heat-killed and live conidia of Botrytis cinerea. Ann. Appl. Biol. 89, 348–351. Web of Science®Google Scholar Hargreaves, JJ. A., and J. A. Bailey, 1978: Phytoalexin production by hypocotyls of Phaseolus vulgaris in response to constitutive metabolites released by damaged bean cells. Physiol. Plant Path. 13, 89–100. 10.1016/0048-4059(78)90078-4 CASWeb of Science®Google Scholar Hargreaves, JJ. A., J. W. Mansfield, and S. Rossall, 1977: Changes in phytoalexin concentrations in tissues of the broad bean plant Vicia faba L. following inoculation with species of Botrytis. Physiol. Plant Path. 11, 227–242. 10.1016/0048-4059(77)90064-9 CASWeb of Science®Google Scholar Hargreaves, JJ. A., and C. Selby, 1978: Phytoalexin formation in cell suspensions of Phaseolus vulgaris in response to an extract of bean hypocotyls. Phytochemistry 17, 1099–1102. 10.1016/S0031-9422(00)94296-1 CASWeb of Science®Google Scholar Hartmann, G., and F. Nienhaus, 1974: The isolation of xanthoxylin from the bark of Phytophthora- and Hendersonula-infected Citrus limon and its fungitoxic effect. Phytopath. Z. 81, 97–113. 10.1111/j.1439-0434.1974.tb02784.x CASGoogle Scholar Heddon, P., J. Macmillan, and P. O. Phinney, 1978: The metabolism of the gibberellins. Ann. Rev. Plant Physiol. 29, 149–192. 10.1146/annurev.pp.29.060178.001053 CASWeb of Science®Google Scholar Heinstein, P. F., D. L. Herman, S. B. Tove, and F. H. Smith, 1970: Biosynthesis of gossypol. Incorporation of mevalonate-2-14C and isoprenylpyrophosphates. J. Biol. Chem. 245, 4658–4665. CASPubMedWeb of Science®Google Scholar Hillis, W. E., 1972: Formation and properties of some wood extractives. Phytochemistry 11, 1207–1218. 10.1016/S0031-9422(00)90067-0 CASWeb of Science®Google Scholar Hillis, W. E., and T. Inoue, 1968: The formation of polyphenols in trees. IV. The polyphenols formed in Pinus radiata after Sirex attack. Phytochemistry 7, 13–22. 10.1016/S0031-9422(00)88199-6 CASWeb of Science®Google Scholar Ingham, J. L., 1976: Isosativan, an isoflavan phytoalexin from Trifolium hybridum and other Trifolium species. Z. Naturforschg. 31c, 331–332. CASGoogle Scholar Ingham, J. L., 1973: Disease resistance in higher plants. Concept of preinfectional and postinfectional resistance. Phytopath. Z. 78, 314–335. 10.1111/j.1439-0434.1973.tb04182.x CASGoogle Scholar Ingham, J. L., and P. M. Dewick, 1978: 6-Demethylvignafuran as a phytoalexin of Tetragonolobus maritimus. Phytochemistr. 17, 535–538. 10.1016/S0031-9422(00)89354-1 CASWeb of Science®Google Scholar Ingham, J. L., and J. B. Harborne, 1976: Phytoalexin induction as a new dynamic approach to the study of systematic relationships among higher plants. Nature (London) 260, 241–243. 10.1038/260241a0 CASWeb of Science®Google Scholar Jaworski, J. G., J. Kuć, and E. B. Williams, 1973: Effect of ethrel and Ceratocystis fimbriata on the accumulation of chlorogenic acid and 6-methoxymellein in carrot root. Phytopathology 63, 408–413. 10.1094/Phyto-63-408 CASWeb of Science®Google Scholar Johnson, C., D. R. Brannon, and J. Kuć, 1973: Xanthotoxin: a phytoalexin of Pastinaca sativa root. Phytochemistry 12, 2961–2962. 10.1016/0031-9422(73)80515-1 CASWeb of Science®Google Scholar Johnson, G., D. D. Maag, D. K. Johnson, and R. D. Thomas, 1976: The possible role of phytoalexins in the resistance of sugar beet Beta vulgaris to Cercospora beticola. Physiol. Plant Path. 8, 225–230. 10.1016/0048-4059(76)90017-5 CASWeb of Science®Google Scholar Jurd, L., J. Corse, A. D. King, H. Bayne, and K. Mihara, 1971: Antimicrobial properties of 6,7-dihydroxy-, 7,8-dihydroxy-, 6-hydroxy-, and 8-hydroxycoumarins. Phytochemistry 10, 2971–2974. 10.1016/S0031-9422(00)97334-5 CASWeb of Science®Google Scholar Kato, T., M. Tsunakawa, N. Sasaki, H. Aizawa, K. Fujita, Y. Kitahara, and N. Taka-hashi, 1977: Growth and germination inhibitors in rice husks. Phytochemistry 16, 45–48. 10.1016/0031-9422(77)83010-0 CASWeb of Science®Google Scholar Keen, N. T., 1978: Contribution to the panel discussion on elicitation and sites of formation of phytoalexins and induced resistance. 3rd Intern. Congr. Plant Pathology, Munich 1978, Abstr., 213. Verlag Paul Parey, Berlin und Hamburg . Google Scholar Keen, N. T., and J. L. Ingham, 1976: New stilbene phytoalexins from American cultivars of Arachis hypogaea. Phytochemistr. 15, 1794–1795. 10.1016/S0031-9422(00)97495-8 CASWeb of Science®Google Scholar Keen, N. T., and B. W. Kennedy, 1974: Hydroxyphaseollin and related isoflavanoids in the hypersensitive resistance reaction of soybeans to Pseudomonas glycinea. Physiol. Plant Path. 4, 173–185. 10.1016/0048-4059(74)90005-8 CASWeb of Science®Google Scholar Keen, N. T., and L. J. Littlefield, 1977: Association of phytoalexins with resistance in flax to Melampsora lini. Proc. Amer. Phytopath. Soc. 4, 101–102. Google Scholar Kelly, R. B., S. J. Alward, K. S. Murty, and J. B. Stothers, 1978: A revised structure for aubergenone, sesquiterpenoid related to eudesmane: synthesis of 4-epi-aubergenone. Canad. J. Chem. 56, 2508–2512. 10.1139/v78-411 CASWeb of Science®Google Scholar Kettenes-van den Bosch, J. J., and C. A. Salemink, 1978: Cannabis. XIX. Oxygenated 1,2-diphenylethanes from marihuana. Recl. Trav. Chim. Pays-Ba. 97, 221–222. 10.1002/recl.19780970714 CASGoogle Scholar Klein, H., A. Priebe, and H.-J. Jäger, 1979: Putrescine and spermidine in peas: effects of nitrogen source and potassium supply. Physiol. Plantarum 45, 497–499. 10.1111/j.1399-3054.1979.tb02621.x CASWeb of Science®Google Scholar Kreuzaler, F., and K. Hahlbrock, 1975: Enzymic synthesis of an aromatic ring from acetate units. Partial purification and some properties of flavanone synthase from cell-suspension cultures of Petroselinum hortense. Eur. J. Biochem. 56, 205–213. 10.1111/j.1432-1033.1975.tb02223.x CASPubMedWeb of Science®Google Scholar Kuć, J., 1967: Shifts in oxidative metabolism during pathogenesis. In: C. J. Mirocha and I. Uritani, Eds., The Dynamic Role of Molecular Constituents in Plant-Parasite Interactions 372 p., 183–199. Amer. Phytopath. Soc., St. Paul , Minn . Google Scholar Kuć, J., 1972: Phytoalexins. Ann. Rev. Phytopath. 10, 207–232. 10.1146/annurev.py.10.090172.001231 CASWeb of Science®Google Scholar Kuć, J., 1973: Metabolites accumulating in potato tubers following infection and stress. Teratology 8, 333–338. 10.1002/tera.1420080316 CASPubMedWeb of Science®Google Scholar Langcake, P., and R. J. Pryce, 1977a: A new class of phytoalexins from grapevine. Experientia 33, 151–152. 10.1007/BF02124034 CASPubMedWeb of Science®Google Scholar Langcake, P., and R. J. Pryce, 1977b: The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 16, 1193–1196. 10.1016/S0031-9422(00)94358-9 CASWeb of Science®Google Scholar Lee, T. T., G. L. Rock, and A. Stoessl, 1978: Effects of orchinol and related phenanthrenes on the enzymic degradation of indole-3-acetic acid. Phytochemistry 17, 1721–1726. 10.1016/S0031-9422(00)88680-X CASWeb of Science®Google Scholar Lisker, N., and J. Kuć, 1977: Elicitors of terpenoid accumulation in potato tuber slices. Phytopathology 67, 1356–1359. 10.1094/Phyto-67-1356 Web of Science®Google Scholar Mace, M. E., A. A. Bell, and R. D. Stipanovic, 1978: Histochemistry and identification of flavanols in Verticillium-wilt-resistant and -susceptible cottons. Physiol. Plant Path. 13, 143–149. 10.1016/0048-4059(78)90027-9 Web of Science®Google Scholar Martin, J. T., E. A. Baker, and R. J. W. Byrde, 1966: The fungitoxicities of plant furo-coumarins. Ann. Appl. Biol. 57, 501–508. 10.1111/j.1744-7348.1966.tb03842.x CASWeb of Science®Google Scholar Martin, M., and P. M. Dewick, 1978: Role of an isoflav-3-ene in the biosynthesis of pterocarpan, isoflavan and coumestan metabolites of Medicago sativa. Tetrahedron Lett., 2341–2344. 10.1016/S0040-4039(01)91531-X CASWeb of Science®Google Scholar Martin, M., and P. M. Dewick, 1979: Biosynthesis of the 2-arylbenzofuran phytoalexin vignafuran in Vigna ungulata. Phytochemistr. 18, 1309–1317. 10.1016/0031-9422(79)83013-7 CASWeb of Science®Google Scholar McNeill, K. E., 1975: Studies on the resistance in protepea cowpea to Verticillium wilt. Diss. Abstr. Inter. B 36, 1005. Google Scholar Mukherjee, N., P. K. Gupta, and N. Adityachaudhury, 1974: Antifungal activity of some pterocarpans and coumestans. Chem. Abstr. 81, 164, 536. Google Scholar Müller, K. O., 1956: Einige einfache Versuche zum Nachweis von Phytoalexinen. Phytopath. Z. 27, 237–254. Google Scholar Müller, K. O., 1969: Die Phytoalexine, in Sicht einer allgemeinen Immunbiologie. Zbl. Bakt. Parasitenkde., Abt. II, 123, 259–265. CASPubMedGoogle Scholar Müller, K. O., und H. Börger, 1940: Experimentelle Untersuchungen über die Phytophthora-Resistenz der Kartoffel. Arb. Biol. Reichsanst. 23, 189–231. Google Scholar Murray, R. D. H., 1978: Naturally occurring plant coumarins. Fortschr. Chem. Org. Naturstoffe 35, 199–429. CASGoogle Scholar Nakajima, K., H. Taguchi, T. Endo, and I. Yosioka, 1978: The constituents of Scirpus fluviatilis (Torr.) A. Gray. I. The structures of two new hydroxystilbene dimers, scirpusin A and B. Chem. Pharm. Bull. 26, 3050–3057. 10.1248/cpb.26.3050 CASWeb of Science®Google Scholar Ogumi, I., and I. Uritani, 1974: Dehydroipomeamarone as an intermediate in the biosynthesis of ipomeamarone, a phytoalexin from sweet potato root infected with Ceratocystis fimbriata. Plant Physiol. 53, 649–652. 10.1104/pp.53.4.649 PubMedWeb of Science®Google Scholar Overeem, J. C., and D. M. Elgersma, 1970: Accumulation of mansonones E and F in Ulmus hollandica infected with Ceratocystis ulmi. Phytochemistr. 9, 1949–1952. 10.1016/S0031-9422(00)85345-5 CASWeb of Science®Google Scholar Perrin, D. R., and I. A. M. Cruickshank, 1965: Studies on phytoalexins. VII. Chemical stimulation of pisatin formation in Pisum sativum L. Austral. J. Biol. Sci. 18, 803–816. 10.1071/BI9650803 CASWeb of Science®Google Scholar Preston, N. W., K. Chamberlain, and R. A. Skipp, 1975: A 2-arylbenzofuran phytoalexin from cowpea Vigna unguiculata. Phytochemistry 14, 1843–1844. 10.1016/0031-9422(75)85307-6 CASWeb of Science®Google Scholar Robeson, D. J., 1978: Furanoacetylene and isoflavonoid phytoalexins in Lens culinaris. Phytochemistr. 17, 807–808. 10.1016/S0031-9422(00)94239-0 CASWeb of Science®Google Scholar Rupprich, N., and H. Kindl, 1978: Stilbene synthases and stilbenecarboxylate synthases. I. Enzymatic synthesis of 3,5,4′-trihydroxystilbene from p-coumaroyl coenzyme A and malonyl coenzyme A. Hopper-Seyler's Z. Physiol. Chem. 359, 165–172. CASPubMedWeb of Science®Google Scholar Russell, C. E., and A. A. Berryman, 1976: Host resistance to the fir engraver beetle. I. Monoterpene composition of Abies grandis pitch blisters and fungus infected wounds. Canad. J. Bot. 54, 14–18. 10.1139/b76-003 Web of Science®Google Scholar Sato, K., Y. Ishiguri, N. Doke, K. Tomiyama, F. Yagihashi, A. Murai, N. Katsui, and T. Masamune, 1978: Biosynthesis of the sesquiterpenoid phytoalexin rishitin from acetate via oxylubimin in potato. Phytochemistry 17, 1901–1902. 10.1016/S0031-9422(00)88729-4 CASWeb of Science®Google Scholar Scheffer, T. C., and E. B. Cowling, 1967: Natural resistance of wood to microbial deterioration. Ann. Rev. Phytopath. 4, 147–166. 10.1146/annurev.py.04.090166.001051 CASGoogle Scholar Sequeira, L., 1969: Synthesis of scopolin and scopoletin in tobacco plants infected with Pseudomonas solanacearum. Phytopatholog. 59, 473–478. CASWeb of Science®Google Scholar Shain, L., 1967: Resistance of sapwood in stems of Loblolly pine to infection with Fomes annosus. Phytopatholog. 57, 1034–1045. Web of Science®Google Scholar Shain, L., and W. E. Hillis, 1973: Ethylene production in xylem of Pinus radiata in relation to heartwood formation. Canad. J. Bot. 51, 1331–1335. 10.1139/b73-166 CASWeb of Science®Google Scholar Shrimpton, D. M., 1973: Extractives associated with wound response of lodgepole pine attacked by the mountain pine beetle and associated microorganisms. Canad. J. Bot. 51, 527–534. 10.1139/b73-064 CASWeb of Science®Google Scholar Smith, I. M., 1971: The induction of antifungal inhibitors in pods of tropical legumes. Physiol. Plant Path. 1, 85–94. 10.1016/0048-4059(71)90017-8 CASWeb of Science®Google Scholar Smith, T. A., 1975: Recent advances in the biochemistry of plant amines. Phytochemistry 14, 865–890. 10.1016/0031-9422(75)85155-7 CASWeb of Science®Google Scholar Steadman, J. R., and L. Sequeira, 1970: Abscisic acid in tobacco plants. Tentative identification and its relation to stunting induced by Pseudomonas solanacearum. Plant Physiol. 45, 691–697. 10.1104/pp.45.6.691 CASPubMedWeb of Science®Google Scholar Steck, W., 1967: The biosynthetic pathway for caffeic acid to scopolin in tobacco leaves. Canad. J. Biochem. 45, 1995–2003. 10.1139/o67-233 CASPubMedWeb of Science®Google Scholar Stekoll, M., and C. A. West, 1978: Purification and properties of an elicitor of castor bean phytoalexin from culture filtrates of the fungus Rhizopus stolonifer. Plant Physiol. 61, 38–45. 10.1104/pp.61.1.38 CASPubMedWeb of Science®Google Scholar Stoessl, A., 1977: Biogenetic relations between some bicyclic sesquiterpenoidal stress compounds of the Solanaceae. In: A. Kiraly, Ed., Current Topics in Plant Pathology 442 p., 61–72. Akad. Kiadó, Budapest . Google Scholar Stoessl, A., and J. B. Stothers, 1978: A carbon-13 biosynthetic study of stress metabolites from carrot roots: eugenin and 6-methoxymellein. Canad. J. Bot. 56, 2589–2593. 10.1139/b78-311 CASWeb of Science®Google Scholar Stoessl, A., J. B. Stothers, and E. W. B. Ward, 1975: The structures of some stress metabolites from Solanum melongena. Canad. J. Chem. 53, 3351–3358. 10.1139/v75-478 CASWeb of Science®Google Scholar Stoessl, A., J. B. Stothers, and E. W. B. Ward, 1976: Sesquiterpenoid stress compounds of the Solanaceae. Phytochemistry 15, 855–872. 10.1016/S0031-9422(00)84361-7 CASWeb of Science®Google Scholar Stoessl, A., J. B. Stothers, and E. W. B. Ward, 1978: Biosynthetic studies of stress metabolites from potatoes: incorporation of sodium acetate-13C2 into 10 sesquiterpenes. Canad. J. Chem. 56, 645–653. 10.1139/v78-106 CASWeb of Science®Google Scholar Stoessl, A., E. W. B. Ward, and J. B. Stothers, 1977: Biosynthetic relationships of sesquiterpenoidal stress compounds from the Solanaceae. In: P. A. Hedin, Ed., Host Plant Resistance to Pests. ACS Symp. Ser. No. 62 286 p., 61–77. Amer. Chem. Soc. Washington , D.C . Google Scholar Suzuki, H., S. Yasuda, and M. Hanzawa, 1972: Extractives of ohyonire, Ulmus laciniata. I. Isolation of 7-hydroxycadalene, mansonone C and E, and lancinelene A and B from the heartwood. Chem. Abstr. 76, 150983. Google Scholar Swinburne, T. R., and A. E. Brown, 1975: The biosynthesis of benzoic acid in Bramley's seedling apples infected by Nectria galligena Bres. Physiol. Plant Path. 6, 259–264. 10.1016/0048-4059(75)90080-6 CASWeb of Science®Google Scholar Takasugi, M., L. Munoz, T. Masamune, A. Shirata, and K. Takahashi, 1978: Studies on the phytoalexins of the Moraceae. 3. Stilbene phytoalexins from diseased mulberry. Chem. Lett., 1241–1242. 10.1246/cl.1978.1241 CASWeb of Science®Google Scholar Vanetten, H. D., and S. G. Pueppke, 1976: Isoflavonoid phytoalexins. Ann. Proc. Phytochem. Soc. 13, 239–289. Google Scholar Wain, R. L., 1977: Chemicals which control plant growth. Chem. Soc. Rev. 6, 261–275. 10.1039/cs9770600261 CASWeb of Science®Google Scholar Wong, E., 1975: Isoflavonoids. In: J. B. Harborne, T. J. Mabry and H. Mabry, Eds., The Flavonoids 1204 p., 743–800. Chapman and Hall, London . Google Scholar Wood, R. K. S., 1978: Evidence for active defence mechanism in plants: a review. Ann. Appl. Biol. 89, 288–290. Web of Science®Google Scholar Woodbury, W., 1970: Biochemical studies of host-pathogen interactions in some plant diseases. Diss. Abstr. 31 B, 1722. Google Scholar Yasuda, S., Y. Kinoshita, and M. Hanzawa, 1974: Phenolic constituents of akinire, Ulmus parvifolia. Chem Abstr. 80, 83284. Google Scholar Yohikawa, M., K. Yamaguchi, and H. Masago, 1979: Biosynthesis and biodegradation of glyceollin by soybean hypocotyls infected with Phytophthora megasperma var. sojae. Physiol. Plant Path. 14, 157–169. 10.1016/0048-4059(79)90004-3 CASWeb of Science®Google Scholar Zähringer, U., J. Ebel, F. Kreuzaler, and H. Grisebach, 1977: Biosynthesis of the elicitor-induced phytoalexin, glyceollin, in soybean Glycine max. Hoppe-Seyler's Z. Physiol. Chem. 358, 1303–1304. Web of Science®Google Scholar Citing Literature Volume99, Issue3November 1980Pages 251-272 ReferencesRelatedInformation