钝化
材料科学
异质结
光电子学
太阳能电池
晶体硅
兴奋剂
开路电压
带隙
非晶硅
图层(电子)
纳米技术
电气工程
电压
工程类
作者
Meijun Lu,Ujjwal Das,Stuart Bowden,Steven Hegedus,Robert W. Birkmire
摘要
Abstract Interdigitated back contact silicon heterojunction (IBC‐SHJ) solar cells have the potential for high open circuit voltage ( V OC ) due to the surface passivation and heterojunction contacts, and high short circuit current density ( J SC ) due to all back contact design. Intrinsic amorphous silicon (a‐Si:H) buffer layer at the rear surface improve the surface passivation hence V OC and J SC , but degrade fill factor (FF) from an “S” shape J – V curve. Two‐dimensional (2D) simulation using “Sentaurus device” demonstrates that the low FF is related to the valence band offset (energy barrier) at the hetero‐interface. Three approaches to the buffer layer are suggested to improve the FF: (1) reduced thickness, (2) increased conductivity, and/or (3) reduced band gap. Experimental IBC‐SHJ solar cells with reduced buffer thickness (<5 nm) and increased conductivity with low boron doping significantly improves FF, consistent with simulation. However, this has only marginal effect on efficiency since J SC and V OC also decrease due to poor surface passivation. A narrow band gap a‐Si:H buffer layer improves cell efficiency to 13.5% with unoptimized passivation quality. These results demonstrate that tailoring the hetero‐interface band structure is critical for achieving high FF. Simulations predicts that efficiences >23% are possible on planar devices with optimized pitch dimensions and achievable surface passivation, and 26% with light trapping. This work provides criterion to design IBC‐SHJ solar cell structures and optimize cell performance. Copyright © 2010 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI