规范化(社会学)
欠采样
生物导体
计算生物学
数据挖掘
计算机科学
生物
标记基因
基因
人工智能
遗传学
人类学
社会学
作者
Joseph N. Paulson,O. Colin Stine,Héctor Corrada Bravo,Mihai Pop
出处
期刊:Nature Methods
[Springer Nature]
日期:2013-09-29
卷期号:10 (12): 1200-1202
被引量:2026
摘要
We introduce a methodology to assess differential abundance in sparse high-throughput microbial marker-gene survey data. Our approach, implemented in the metagenomeSeq Bioconductor package, relies on a novel normalization technique and a statistical model that accounts for undersampling-a common feature of large-scale marker-gene studies. Using simulated data and several published microbiota data sets, we show that metagenomeSeq outperforms the tools currently used in this field.
科研通智能强力驱动
Strongly Powered by AbleSci AI