New Morphological Features for Grading Pancreatic Ductal Adenocarcinomas

分级(工程) 病态的 病理 胰腺导管腺癌 医学 胰管 管腔(解剖学) 腺癌 胰腺 放射科 胰腺癌 生物 内科学 癌症 生态学
作者
Jae-Won Song,Ju-Hong Lee
出处
期刊:BioMed Research International [Hindawi Limited]
卷期号:2013: 1-25 被引量:14
标识
DOI:10.1155/2013/175271
摘要

Pathological diagnosis is influenced by subjective factors such as the individual experience and knowledge of doctors. Therefore, it may be interpreted in different ways for the same symptoms. The appearance of digital pathology has created good foundation for objective diagnoses based on quantitative feature analysis. Recently, numerous studies are being done to develop automated diagnosis based on the digital pathology. But there are as of yet no general automated methods for pathological diagnosis due to its specific nature. Therefore, specific methods according to a type of disease and a lesion could be designed. This study proposes quantitative features that are designed to diagnose pancreatic ductal adenocarcinomas. In the diagnosis of pancreatic ductal adenocarcinomas, the region of interest is a duct that consists of lumen and epithelium. Therefore, we first segment the lumen and epithelial nuclei from a tissue image. Then, we extract the specific features to diagnose the pancreatic ductal adenocarcinoma from the segmented objects. The experiment evaluated the classification performance of the SVM learned by the proposed features. The results showed an accuracy of 94.38% in the experiment distinguishing between pancreatic ductal adenocarcinomas and normal tissue and a classification accuracy of 77.03% distinguishing between the stages of pancreatic ductal adenocarcinomas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆螺钉完成签到,获得积分20
刚刚
所所应助风中莫英采纳,获得10
刚刚
1秒前
善学以致用应助Longy采纳,获得10
1秒前
活泼的花生完成签到,获得积分10
1秒前
zhang005on完成签到,获得积分10
1秒前
superspace完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助看不懂采纳,获得10
2秒前
2秒前
amanda完成签到,获得积分10
2秒前
miaomiao完成签到,获得积分10
3秒前
zzz完成签到,获得积分10
3秒前
dark灵发布了新的文献求助10
3秒前
13344完成签到 ,获得积分10
4秒前
yuxiaohua完成签到,获得积分10
4秒前
bittersugar发布了新的文献求助10
4秒前
4秒前
4秒前
liu完成签到 ,获得积分10
5秒前
993494543完成签到,获得积分10
5秒前
洪悦冰应助leinuo077采纳,获得10
5秒前
ZXL完成签到,获得积分20
6秒前
可爱的函函应助灯灯采纳,获得10
6秒前
知非发布了新的文献求助10
6秒前
6秒前
承欢完成签到,获得积分10
6秒前
九九发布了新的文献求助10
6秒前
滴滴滴完成签到,获得积分10
6秒前
6秒前
7秒前
高xuewen完成签到,获得积分10
7秒前
迷人绿柏发布了新的文献求助10
7秒前
SciKid524完成签到 ,获得积分10
7秒前
7秒前
aaaar完成签到 ,获得积分10
8秒前
CipherSage应助邓晓云采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645392
求助须知:如何正确求助?哪些是违规求助? 4768659
关于积分的说明 15028508
捐赠科研通 4803961
什么是DOI,文献DOI怎么找? 2568583
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485551