We have systematically investigated effects of plasma processing, formation of Si-based dielectrics, and formation of a thin Al2O3 film on the chemical and electronic properties of GaN and GaN/AlGaN heterostructure surfaces. The surface treatment in H2-plasma excited by electron-cyclotron-resonance (ECR) source, produced nitrogen-vacancy-related defect levels at GaN and AlGaN surfaces, while the ECR-N2-plasma treatment improved electronic properties of the surfaces. The deposition of a SiO2 film on GaN and AlGaN surfaces was found to induce high-density interface states, due to unexpected and uncontrollable oxidation reactions on the surfaces during the deposition process. In comparison, the SiNx/GaN passivation structure prepared by ECR-plasma assisted chemical vapor deposition showed good interface properties with the minimum Dit value of 1×1011 cm−2 eV−1. However, excess leakage currents governed by Fowler–Nordheim tunneling were observed in the SiNx/Al0.3Ga0.7N structure, due to a relatively small con...