RAR相关孤儿受体γ
内科学
孤儿受体
内分泌学
FOXP3型
甲状腺
车站3
维甲酸
点头老鼠
STAT蛋白
点头
医学
化学
免疫系统
免疫学
分子生物学
生物
细胞凋亡
转录因子
生物化学
糖尿病
基因
作者
Xiao Ping Yang,Tianshu Gao,Rui Shi,Xiao‐Qiu Zhou,Jin-qiao Qu,Jia Xu,Zhongyan Shan,Weiping Teng
标识
DOI:10.1007/s12011-014-9958-y
摘要
Iodine is an indispensable micronutrient for thyroid hormone synthesis and metabolism. Iodine excess may trigger and exacerbate autoimmune thyroiditis (AIT). The pathogenetic mechanism of iodine excess-induced AIT is partly regarded as T helper type 1 (Th1) cell and/or T helper type 17 (Th17) cell dominant autoimmune disease. It is still unknown whether other cluster of differentiation 4+ T (CD4+T) cell subpopulations are involved. Therefore, we studied the profile of all the CD4+T cell subpopulations of the thyroid in iodine excess-induced nonobese diabetic-H2h4 (NOD.H-2h4) mice to explore the potential immunologic mechanism of iodine excess-induced AIT. A total of 40 healthy 8-week-old NOD.H-2h4 mice were randomly allocated into the normal group (NG, n=20) and the test group (TG, n=20), which were fed with double-distilled water and 0.05% sodium iodine (NaI) for 8 weeks, respectively. Compared to the NG, in the TG, the incidence of AIT was significantly higher, the expressions of interleukin-17 (IL-17), interleukin-23 (IL-23), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β) remarkably increased by immunohistochemistry, which were further verified by reverse transcription polymerase chain reaction (RT-PCR), while the protein and mRNA expressions of interleukin-4 (IL-4) and interferon-γ (INF-γ) decreased markedly. In the AIT mice, the expressions of retinoic acid-related orphan receptor gamma t (RORγt), retinoic acid-related orphan receptor alpha (RORα), and signal transducer and activator of transcription 3 (STAT3) were much higher, the expression of forkhead/winged helix transcription factor p3 (Foxp3) significantly lower by western blot, and the proportion of Th17 cells by flow cytometry method (FCM) much larger compared to those of the NG group. In conclusion, Th17 cells may promote an inflammatory reaction in the development of iodine-excess-induced AIT, which is negatively regulated by Th1, T helper type 2 (Th2), and regulatory T (Treg) cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI