高光谱成像
压缩传感
全光谱成像
数据立方体
遥感
计算机科学
空间分析
数据压缩
化学成像
光学
光谱成像
物理
人工智能
计算机视觉
地质学
数据挖掘
作者
Yitzhak August,Chaim Vachman,Yair Rivenson,Adrian Stern
出处
期刊:Applied Optics
[The Optical Society]
日期:2013-03-21
卷期号:52 (10): D46-D46
被引量:163
摘要
An efficient method and system for compressive sensing of hyperspectral data is presented. Compression efficiency is achieved by randomly encoding both the spatial and the spectral domains of the hyperspectral datacube. Separable sensing architecture is used to reduce the computational complexity associated with the compressive sensing of a large volume of data, which is typical of hyperspectral imaging. The system enables optimizing the ratio between the spatial and the spectral compression sensing ratios. The method is demonstrated by simulations performed on real hyperspectral data.
科研通智能强力驱动
Strongly Powered by AbleSci AI